704
Views
4
CrossRef citations to date
0
Altmetric
Europe

Motor imagery during action observation in virtual reality: the impact of watching myself performing at a level I have not yet achieved

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 401-427 | Received 06 Oct 2021, Accepted 10 Mar 2022, Published online: 19 May 2022

References

  • Achenbach, J., Waltemate, T., Latoschik, M., & Botsch, M. (2017). Fast generation of realistic virtual humans. In M. Fjeld, M. Fratarcangeli, D. Sjölie, O. Staadt, & J. Unger (Eds.), Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology - VRST ‘17 (pp. 12:1–12:10). ACM. doi:10.1145/3139131.3139154
  • Anderson, R., & Campbell, M. J. (2015). Accelerating skill acquisition in rowing using self-based observational learning and expert modelling during performance. International Journal of Sports Science & Coaching, 10(2-3), 425–437. https://doi.org/10.1260/1747-9541.10.2-3.425
  • Andrieux, M., & Proteau, L. (2013). Observation learning of a motor task: Who and when? Experimental Brain Research, 229(1), 125–137. https://doi.org/10.1007/s00221-013-3598-x
  • Andrieux, M., & Proteau, L. (2014). Mixed observation favors motor learning through better estimation of the model’s performance. Experimental Brain Research, 232(10), 3121–3132. https://doi.org/10.1007/s00221-014-4000-3
  • Aoyama, T., Kaneko, F., & Kohno, Y. (2020). Motor imagery combined with action observation training optimized for individual motor skills further improves motor skills close to a plateau. Human Movement Science, 73, 102683. https://doi.org/10.1016/j.humov.2020.102683
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall.
  • Bandura, A. (1997). Self-efficacy: The exercise of control. W H Freeman/Times Books/ Henry Holt & Co.
  • Bandura, A. (2006). Guide for constructing self-efficacy scales. In F. Pajares, & T. Urdan (Eds.), Self-efficacy beliefs of adolescents (pp. 307–337). Information Age Publishing.
  • Berends, H. I., Wolkorte, R., Ijzerman, M. J., & van Putten, M. J. (2013). Differential cortical activation during observation and observation-and-imagination. Experimental Brain Research, 229(3), 337–345. https://doi.org/10.1007/s00221-013-3571-8
  • Bernstein, N. A. (1967). The co-ordination and regulation of movements. Pergamon Press.
  • Bernstein, N. A. (1971). Bewegungskontrolle [movement control]. In T. Kussmann &, & H. Kölling (hrsg.) (Eds.), biologie und verhalten [biology and behavior] (pp. 146–172). Huber.
  • Bernstein, N. A. (1996). Die entwicklung der bewegungsfertigkeiten [The development of motor skills]. IAT Eigenverlag.
  • Chye, S., Chembila Valappil, A., Wright, D., Frank, C., Shearer, D., Tyler, C., Diss, C., Mian, O., Tillin, N., & Bruton, A. (2022). The effects of combined action observation and motor imagery on corticospinal excitability and movement outcomes: A meta-analysis. doi: https://doi.org/10.17605/OSF.IO/9YEBV
  • Clark, S. E., & Ste-Marie, D. M. (2007). The impact of self-as-a-model interventions on children’s self-regulation of learning and swimming performance. Journal of Sports Sciences, 25(5), 577–586. https://doi.org/10.1080/02640410600947090
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155
  • de Kok, I., Hülsmann, F., Waltemate, T., Frank, C., Hough, J., Pfeiffer, T., Schlangen, D., et al. (2017). The intelligent coaching space: A demonstration. In J. Beskow, C. Peters, G. Castellano, C. O'Sullivan, I. Leite, & S. Kopp (Eds.), Lecture Notes in Computer Science: Vol. 10498. Intelligent Virtual Agents: 17th International Conference on Intelligent Virtual Agents from August 27th to 30th in Stockholm, Sweden (vol. 10498; pp. 105–108). Cham: Springer. doi: 10.1007/978-3-319-67401-8
  • Di Rienzo, F., Collet, C., Hoyek, N., & Guillot, A. (2012). Selective effect of physical fatigue on motor imagery accuracy. PLoS ONE, 7(10), e47207. https://doi.org/10.1371/journal.pone.0047207
  • Dowrick, P. W. (1999). A review of self modeling and related interventions. Applied and Preventive Psychology, 8(1), 23–39. https://doi.org/10.1016/S0962-1849(99)80009-2
  • Dowrick, P. W. (2012a). Self modeling: Expanding the theories of learning. Psychology in the Schools, 49(1), 30–41. https://doi.org/10.1002/pits.20613
  • Dowrick, P. W. (2012b). Self model theory: Learning from the future. WIRES Cognitive Science, 3(2), 215–230. https://doi.org/10.1002/wcs.1156
  • Dowrick, P. W., & Johns, E. M. (1976). Video feedback effects on therapist attention to on-task behaviors of disturbed children. Journal of Behavior Therapy and Experimental Psychiatry, 7(3), 255–257. https://doi.org/10.1016/0005-7916(76)90009-4
  • Dowrick, P. W., & Raeburn, J. M. (1995). Self-modeling: Rapid skill training for children with physical disabilities. Journal of Developmental and Physical Disabilities, 7(1), 25–37. https://doi.org/10.1007/BF02578712
  • Eaves, D., Behmer, L. & Vogt, S. (2016). Eeg and behavioural correlates of different forms of motor imagery during action observation in rhythmical actions. Brain and Cognition, 106, 90–103. https://doi.org/10.1016/j.bandc.2016.04.013
  • Eaves, D., Breslin, G., Van Schaik, P., Robinson, E., & Spears, I. (2011). The short-term effects of real-time virtual reality feedback on motor learning in dance. Presence: Teleoperators and Virtual Environments, 20(1), 62–77. https://doi.org/10.1162/pres_a_00035
  • Eaves, D., Riach, M., Holmes, P., & Wright, D. (2016). Motor imagery during action observation: A brief review of evidence, theory and future research opportunities. Frontiers in Neuroscience, 10, 514. https://doi.org/10.3389/fnins.2016.00514
  • Feltz, D. L., Landers, D. M., & Raeder, U. (1979). Enhancing self-efficacy in high-avoidance motor tasks: A comparison of modeling techniques. Journal of Sport Psychology, 1(2), 112–122. https://doi.org/10.1123/jsp.1.2.112
  • Feltz, D. L., Short, S. E., & Sullivan, P. J. (2008). Short book review: Self efficacy in sport: Research and strategies for working with athletes, teams and coaches. International Journal of Sports Science & Coaching, 3(2), 293–295. https://doi.org/10.1260/174795408785100699
  • Fitts, P. M., & Posner, M. I. (1967). Human performance. Brooks/Cole.
  • Frank, C., Bekemeier, K., & Menze-Sonneck, A. (2021). Imagery training in school-based physical education improves the performance and the mental representation of a complex action in comprehensive school students. Psychology of Sport and Exercise, https://doi.org/10.1016/j.psychsport.2021.101972
  • Frank, C., Kim, T., & Schack, T. (2018). Observational practice promotes action-related order formation in long-term memory: Investigating action observation and the development of cognitive representation in complex motor action. Journal of Motor Learning and Development, 6(1), 53–72. https://doi.org/10.1123/jmld.2017-0007
  • Frank, C., Land, W. M., Popp, C., & Schack, T. (2014). Mental representation and mental practice: Experimental investigation on the functional links between motor memory and motor imagery. PLoS ONE, 9(4), e95175. https://doi.org/10.1371/journal.pone.0095175
  • Frank, C., Land, W. M., & Schack, T. (2016). Perceptual-cognitive changes during motor learning: The influence of mental and physical practice on mental representation, gaze behavior, and performance of a complex action. Frontiers in Psychology, 6, 1981. https://doi.org/10.3389/fpsyg.2015.01981
  • Frank, C., Wright, D., & Holmes, P. (2020). Mental simulation and neurocognition: Advances for motor imagery and action observation training in sport. In D. Hackfort, & R. J. Schinke (Eds.), Routledge international encyclopedia of sport and exercise psychology, Volume 2: Applied and Practical Measures (pp. 411–429). Oxon, New York: Routledge. doi: 10.4324/9781315187228
  • Göhner, U. (1992). Einführung in die Bewegungslehre des sports. Teil 1: Die sportlichen bewegungen [Introduction to kinematics in sports, part 1: The athletic movements]. Schorndorf: Hofmann.
  • Göhner, U. (1999). Einführung in die Bewegungslehre des Sports. Teil 2: Bewegungslehre des Sports [Introduction to kinematics in sports, part 2: Kinematics in sports]. Schorndorf: Hofmann.
  • Hall, C., & Martin, K. (1997). Measuring movement imagery abilities: A revision of the movement imagery questionnaire. Journal of Mental Imagery, 21, 143–154.
  • Hayes, S. J., Ashford, D., & Bennett, S. J. (2008). Goal-directed imitation: The means to an end. Acta Psychologica, 127(2), 407–415. https://doi.org/10.1016/j.actpsy.2007.07.009
  • Hitchcock, C., Prater, M. A., & Dowrick, P. W. (2004). Reading comprehension and fluency: Examining the effects of tutoring and video self-modeling on first-grade students with reading difficulties. Learning Disability Quarterly, 27(2), 89–103. https://doi.org/10.2307/1593644
  • Horn, R. R., Williams, A. M., Hayes, S. J., Hodges, N. J., & Scott, M. A. (2007). Demonstration as a rate enhancer to changes in coordination during early skill acquisition. Journal of Sports Sciences, 25(5), 599–614.. https://doi.org/10.1080/02640410600947165
  • Hossner, E.-J., Schiebl, F., & Göhner, U. (2015). A functional approach to movement analysis and error identification in sports and physical education. Frontiers in Psychology, 6, 1339. https://doi.org/10.3389/fpsyg.2015.01339
  • Hülsmann, F., Frank, C., Senna, I., Ernst, M. O., Schack, T., & Botsch, M. (2019). Superimposed skilled performance in a virtual mirror improves motor performance and cognitive representation of a full body motor action. Frontiers in Robotics and AI, 6, 43. https://doi.org/10.3389/frobt.2019.00043
  • Hülsmann, F., Göpfert, J. P., Hammer, B., Kopp, S., & Botsch, M. (2018). Classification of motor errors to provide real-time feedback for sports coaching in virtual reality — A case study in squats and Tai Chi pushes. Computers & Graphics, 76, 47–59. https://doi.org/10.1016/j.cag.2018.08.003
  • Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33(11), 1419–1432. https://doi.org/10.1016/0028-3932(95)00073-C
  • Kaneko, N., Masugi, Y., Usuda, N., Yokoyama, H., & Nakazawa, K. (2018). Modulation of hoffmann reflex excitability during action observation of walking with and without motor imagery. Neuroscience Letters, 684, 218–222. https://doi.org/10.1016/j.neulet.2018.07.041
  • Kennedy, S. R., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap0303_3
  • Kim, T., Frank, C., & Schack, T. (2017). A systematic investigation of the effect of action observation training and motor imagery training on the development of mental representation structure and skill performance. Frontiers in Human Neuroscience, 11, 499. https://doi.org/10.3389/fnhum.2017.00499
  • Kim, T., Frank, C., & Schack, T. (2020). The effect of alternate training of action observation and motor imagery on cognitive and skill performance. International Journal of Sport Psychology, 51(2), 101–121. https://doi.org/10.7352/IJSP.2020.51.101
  • Kim, T., Frank, C., & Schack, T. (in press). The effect of different schedules of action observation training and motor imagery training on the changes in mental representation structure and skill performance. International Journal of Sport Psychology.
  • Latoschik, M., Roth, D., Gall, D., Achenbach, J., Waltemate, T., & Botsch, M. (2017). The effect of avatar realism in immersive social virtual realities. Proceedings of ACM Symposium on Virtual Reality Software and Technology ACM, 39, 1–10. https://doi.org/10.1145/3139131.3139156
  • Law, B., Post, P., & McCullagh, P. (2017). Oxford research encyclopedia of psychology. In Oxford Research Encyclopedia of Psychology, 1–34. https://doi.org/10.1093/acrefore/9780190236557.013.159
  • Marshall, B., Wright, D. J., Holmes, P. S., & Wood, G. (2020). Combining action observation and motor imagery improves eye-hand coordination during novel visuomotor task performance. Journal of Motor Behavior, 52(3), 333–341. https://doi.org/10.1080/00222895.2019.1626337
  • Martens, R., Burwitz, L., & Zuckerman, J. (1976). Modeling effects on motor performance. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 47, 277–291. https://doi.org/10.1080/10671315.1976.10615372
  • Marusic, U., Grosprêtre, S., Paravlic, A., Kovac, S., Pisot, R., & Taube, W. (2018). Motor imagery during action observation of locomotor tasks improves rehabilitation outcome in older adults after total hip arthroplasty. Neural Plasticity, 2018). https://doi.org/10.1155/2018/5651391
  • McCullagh, P., & Caird, J. K. (1990). Correct and learning sequence models and the use of model knowledge of results to enhance acquisition and retention of a motor skill. Journalof Human Movement Studies, 18(3), 107–116. https://doi.org/10.1080/02701367.1997.10608866
  • McCullagh, P., Law, B., & Ste-Marie, D. (2012). Modeling and performance. In S. M. Murphy (Ed.). The Oxford Handbook of Sport and Performance Psychology, 250–272. doi: 10.1093/oxfordhb/9780199731763.013.0013
  • McKenzie, A. D., & Howe, B. L. (1997). The effects of imagery on self-efficacy for a motor skill. International Journal of Sport Psychology, 28, 196–210.
  • McNeill, E., Toth, A. J., Harrison, A. J., & Campbell, M. J. (2020). Cognitive to physical performance: A conceptual model for the role of motor simulation in performance. International Review of Sport and Exercise Psychology, 13(1), 205–230. https://doi.org/10.1080/1750984X.2019.1689573
  • McNeill, E., Toth, A. J., Ramsbottom, N., & Campbell, M. J. (2021). Self-modelled versus skilled-peer modelled AO+MI effects on skilled sensorimotor performance: A stage 2 registered report. Psychology of Sport and Exercise, 54, 101910. https://doi.org/10.1016/j.psychsport.2021.101910
  • Munzert, J., & Zentgraf, K. (2009). Progress in brain research. Progress in Brain Research, 174, 219–229. https://doi.org/10.1016/S0079-6123(09)01318-1
  • Nedelko, V., Hassa, T., Hamzei, F., Schoenfeld, M., & Dettmers, C. (2012). Action imagery combined with action observation activates more corticomotor regions than action observation alone. Journal of Neurologic Physical Therapy, 36(4), 182–188. https://doi.org/10.1097/NPT.0b013e318272cad1
  • Neumann, D. L., Moffitt, R. L., Thomas, P. R., Loveday, K., Watling, D. P., Lombard, C. L., Antonova, S., & Tremeer, M. A. (2018). A systematic review of the application of interactive virtual reality to sport. Virtual Reality, 22(3), 183–198. https://doi.org/10.1007/s10055-017-0320-5
  • Pollock, B. J., & Lee, T. D. (1992). Effects of the model's skill level on observational motor learning. Research Quarterly for Exercise and Sport, 63(1), 25–29. https://doi.org/10.1080/02701367.1992.10607553
  • Ratan, R. (2012). Self-presence, explicated: Body, emotion, and identity extension into the virtual self. In R. Luppicini (Ed.), Handbook of Research on technoself: Identity in a technological society (pp. 322-336). hershey. IGI Global.
  • Robin, N., Toussaint, L., Charles-Charlery, C., & Coudevylle, G. (2019). Free throw performance in non-expert basketball players: The effect of dynamic motor imagery combined with action observation. Learning and Motivation, 68, 101595. https://doi.org/10.1016/j.lmot.2019.101595
  • Romano-Smith, S., Wood, G., Coyles, G., Roberts, J. W., & Wakefield, C. J. (2019). The effect of action observation and motor imagery combinations on upper limb kinematics and EMG during dart-throwing. Scandinavian Journal of Medicine & Science in Sports, 29(12), 1917–1929. https://doi.org/10.1111/sms.13534
  • Romano-Smith, S., Wood, G., Wright, D., & Wakefield, C. (2018). Simultaneous and alternate action observation and motor imagery combinations improve aiming performance. Psychology of Sport and Exercise, 38, 100–106. https://doi.org/10.1016/j.psychsport.2018.06.003
  • Rymal, A., & Ste-Marie, D. (2017). Imagery ability moderates the effectiveness of video self modeling on gymnastics performance. Journal of Applied Sport Psychology, 29(3), 304–322. https://doi.org/10.1080/10413200.2016.1242515
  • Sakamoto, M., Muraoka, T., Mizuguchi, N., & Kanosue, K. (2009). Combining observation and imagery of an action enhances human corticospinal excitability. Neuroscience Research, 65(1), 23–27. https://doi.org/10.1016/j.neures.2009.05.003
  • Santos, J. M., & Embrechts, M. (2009). On the use of the Adjusted Rand Index as a metric for evaluating supervised classification. In C. Alippi, M. Polycarpou, C. Panayiotou, G. Ellinas (Eds.), Artificial Neural Networks ICANN, Lecture Notes in Computer Science (pp. 175–184). Springer. doi:10.1007/978-3-642-04277-5_18
  • Schack, T. (2012). Measuring mental representations. In G. Tenenbaum, R. C. Eklund, & A. Kamata (Eds.), Measurement in sport and exercise psychology (pp. 203-214). Champaign. Human Kinetics.
  • Schack, T., Land, W. M., & Frank, C. (2016). Scaffolding in motor learning: The influence of different types of practice on action representation, gaze behavior and performance. Journal of Sport and Exercise Psychology, 37, S106.
  • Scott M., Taylor S., Chesterton, P., Vogt, S., & Eaves, D. L. (2018). Motor imagery during action observation increases eccentric hamstring force: An acute non-physical intervention. Disability and Rehabilitation, 40(12), 1443–1451. https://doi.org/10.1080/09638288.2017.1300333
  • Short, S., & Ross-Stewart, L. (2008). A review of self-efficacy based interventions. In S. Mellalieu, & S. Hanton (Eds.), Advances in Applied Sport psychology (pp. 231–290). Routledge.
  • Simonsmeier, B., Andronie, M., Buecker, S., & Frank, C. (2020). The effects of imagery interventions in sports: A meta-analysis. International Review of Sport and Exercise Psychology, 1–22. doi: 10.1080/1750984X.2020.1780627
  • Sohoo, S., Takemoto, K. Y., & McCullagh, P. (2004). A comparison of modelling and imagery on the performance of a motor skill. Journal of Sport Behaviour, 27, 349–365.
  • Starek, J., & McCullagh, P. (1999). The effect of self-modeling on the performance of beginning swimmers. The Sport Psychologist, 13(3), 269–287. https://doi.org/10.1123/tsp.13.3.269
  • Ste-Marie, D. M., Law, B., Rymal, A. M., Jenny, O., Hall, C., & McCullagh, P. (2012). Observation interventions for motor skill learning and performance: An applied model for the use of observation. International Review of Sport and Exercise Psychology, 5(2), 145–176. https://doi.org/10.1080/1750984X.2012.665076
  • Ste-Marie, D. M., Lelievre, N., & St. Germain, L. (2020). Revisiting the applied model for the use of observation: A review of articles spanning 2011-2018. Research Quarterly for Exercise and Sport, 91(4), 594–617. https://doi.org/10.1080/02701367.2019.1693489
  • Ste-Marie, D. M., Vertes, K., Rymal, A. M., & Martini, R. (2011). Feedforward self-modeling enhances skill acquisition in children learning trampoline skills. Frontiers in Psychology, 2, 155. https://doi.org/10.3389/fpsyg.2011.00155
  • Taube, W., Mouthon, M., Leukel, C., Hoogewoud, H. M., Annoni, J. M., & Keller, M. (2015). Brain activity during observation and motor imagery of different balance tasks: An fMRI study. Cortex, 64, 102–114. https://doi.org/10.1016/j.cortex.2014.09.022
  • Toth, A., McNeill, E., Hayes, K., Moran, A., & Campbell, M. (2020). Does mental practice still enhance performance? A, 24), year follow-up and meta-analytic replication and extension. Psychology of Sport and Exercise, 48, 101672. https://doi.org/10.1016/j.psychsport.2020.101672
  • Vogt, S., di Rienzo, F. D., Collet, C., Collins, A., & Guillot, A. (2013). Multiple roles of motor imagery during action observation. Frontiers in Human Neuroscience, 7, 807. https://doi.org/10.3389/fnhum.2013.00807
  • Waltemate, T., Gall, D., Roth, D., Botsch, M., & Latoschik, M. E. (2018). The impact of avatar personalization and immersion on virtual body ownership, presence, and emotional response. IEEE Transactions on Visualization and Computer Graphics, 24(4), 1643–1652. https://doi.org/10.1109/TVCG.2018.2794629
  • Waltemate, T., Hülsmann, F., Pfeiffer, T., Kopp, S., & Botsch, M. (2015). Realizing a low-latency virtual reality environment for motor learning. In Proceedings of the 21st ACM symposium on virtual reality software and technology (pp. 139–147). doi:https://dl.acm.org/doi/10.1145/2821592.2821607
  • Wright, D. J., Williams, J., & Holmes, P. S. (2014). Combined action observation and imagery facilitates corticospinal excitability. Frontiers in Human Neuroscience, 8, 951. https://doi.org/10.3389/fnhum.2014.00951
  • Wright, D., Wood, G., Eaves, D., Bruton, A., Frank, C., & Franklin, Z. (2018). Corticospinal excitability is facilitated by combined action observation and motor imagery of a basketball free throw. Psychology of Sport and Exercise, 39, 114–121. https://doi.org/10.1016/j.psychsport.2018.08.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.