630
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical Accuracy of the Predictor-Corrector Method to Solve Fuzzy Differential Equations Based on the Stochastic Arithmetic

ORCID Icon &
Pages 335-354 | Received 15 Mar 2020, Accepted 11 Jan 2021, Published online: 09 Jul 2021

References

  • Gomes LT, Barros LC, Bede B. Fuzzy differential equations in various approaches. Cham: Springer; 2015. ISBN: 978-3-319-22574-6.
  • Abbasbandy S, Allahviranloo T, Lopez-Pouso O, et al. Numerical methods for fuzzy differential inclusions. J Comput Math Appl. 2004;48:1633–1641.
  • Allahviranloo T, Abbasbandy S, Ahmady N, et al. Improved predictor-corrector method for solving fuzzy initial value problems. Inf Sci (Ny). 2009;179:945–955.
  • Allahviranloo T, Ahmady N, Ahmady E. Numerical solution of fuzzy differential equations by predictor-corrector method. Information Sci.. 2007;177(7):1633–1647.
  • Bayrak MA, Can E. Numerical solution of fuzzy differential equations by Milne's predictor-corrector method. Math Scie App E-Notes. 2015;3:137–153.
  • Bede B. Note on “Numerical solution of fuzzy differential equations by predictor-corrector method”. Inform Sci. 2008;178:1917–1922.
  • Bede B, Gal SG. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005;151:581–599.
  • Jayakumar T, Kanagarajan K. Numerical solution for hybrid fuzzy systems by Milne's fourth order predictor-corrector method. Int Math Forum. 2014;6:273–289.
  • Kaleva O. A note on fuzzy differential equations. Nonlinear Anal. 2006;64:895–900.
  • Stefanini L. Generalized LU-fuzzy derivative and numerical solution of fuzzy differential equations. Proceedings of the 2007 IEEE International Conference on Fuzzy Systems, London: July 2007. IEEE Xplore. p. 710–715.
  • Cong-Xin W, Ming M. On embedding problem of fuzzy number spaces: part: I. Fuzzy Sets Syst. 1991;44:33–38.
  • Ghazanfari B, Shakerami A. Numerical solutions of fuzzy differential equations by extended Runge-Kutta-like formulae of order 4. Fuzzy Sets Syst. 2011;189:74–91.
  • Vignes J, La Porte M. Error analysis in computing. In: Information Processing 1974, North-Holland, Amsterdam; 1974. p. 610–614.
  • Chesneaux JM. Modélisation et conditions de validite de la méthode CESTAC. C R Acad Sci Paris Sér I Math. 1988;307:417–422.
  • Fariborzi Araghi MA, Noeiaghdam S. Validation of numerical algorithms: stochastic arithmetic. 1st ed. Tehran: Entekhab Bartar publisher; 2021. ISBN: 987-622-6498-09-8.
  • Vignes J. A stochastic approach to the analysis of round-off error propagation. A survey of the CESTAC method, In: Proceedings of the 2nd Real Numbers and Computers Conference, Marseille, France; 1996. p. 233–251.
  • Abbasbandy S, Fariborzi Araghi MA. A stochastic scheme for solving definite integrals. Appl Numer Math. 2005;55:125–136.
  • Abbasbandy S, Fariborzi Araghi MA. The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree. Appl Numer Math. 2004;50:279–290.
  • Abbasbandy S, Fariborzi Araghi MA. A reliable method to determine the ill-condition functions using stochastic arithmetic. Southwest J Pure Appl Math. 2002;1:33–38.
  • Abbasbandy S, Fariborzi Araghi MA. Numerical solution of improper integrals with valid implementation. Math Comput Appl. 2002;7:83–91.
  • Abbasbandy S, Fariborzi Araghi MA. The valid implementation of numerical integration methods. Far East J Appl Math. 2002;8:89–101.
  • Chesneaux JM, Jezequel F. Dynamical control of computations using the trapezodial and simpson's rules. J Universal Comput Sci. 1998;4:2–10.
  • Chesneaux JM. Study of the computing accuracy by using probabilistic approach. In: Ullrich C, editor. Contribution to Computer Arithmetic and Self-Validating Numerical Methods, IMACS, New Brunswick, 1990, p. 19–30.
  • Chesneaux JM, Vignes J. Les fondements de larithmetique stochastique. C R Acad Sci Paris Sér I Math. 1992;315:1435–1440.
  • Vignes J. A stochastic arithmetic for reliable scientific computation. Math Comp Simul. 1993;35:233–261.
  • Barzegar Kelishami H, Fariborzi Araghi MA, Allahviranloo T. Dynamical control of computations using the finite differences method to solve fuzzy boundary value problem. J Intell & Fuzzy Syst. 2019;36:1785–1796.
  • Fariborzi Araghi MA, Barzegar Kelishami H. Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation. J Fuzzy Set Valued Anal. 2016;1:71–84.
  • Fariborzi Araghi MA, Fattahi H. Solving fuzzy Linear systems in the stochastic arithmetic by applying CADNA library. Proceedings of the International Conference on Evolutionary Computation Theory and Applications (FCTA); SCITEPRESS (Science and Technology Publications, Lda.), Setúbal, Portugal; 2011. p. 446–450.
  • Khojasteh Salkuyeh D, Toutounian F, Shariat Yazdi H. A procedure with step size control for solving n one-dimensional IVPs. Math Comput Simul. 2008;79:167–176.
  • Bede B, Gal SG. Solutions of fuzzy differential equations based on generalized differentiability. Commun Math Anal. 2010;9:22–41.
  • Anastassiou GA. Fuzzy mathematics: approximation theory. Berlin: Springer; 2010.
  • Buckley JJ, Feuring T. Fuzzy differential equations. Fuzzy Sets Syst. 2000;110:43–54.
  • Chang SL, Zadeh LA. On fuzzy mapping and control. IEEE Trans Syst Man Cybernet. 1972;2:30–34.
  • Goetschel R, Voxman W. Elementary calculus. Fuzzy Sets Syst. 1986;18:31–43.
  • Dubois D, Prade H. Toward fuzzy differential calculus: part 3, differentiation. Fuzzy Sets Syst. 1982;8:225–233.
  • Jezequel F. Controle dynamique de methodes dapproximation, habilitationa diriger des recherches. Paris: Universite Pierre et Marie Curie; 2005 Feb.
  • Kaleva O. The cauchy problem for fuzzy differential equations. Fuzzy Sets Syst. 1990;35:389–396.
  • Jain MK. Numerical solution of differential equations. New Delhi: New Age International(p) Limited; 2000.
  • Burden RL, Faires JD. Numerical analysis. 9th ed. Boston (MA): PWS Publishers; 1985.
  • Gear CW. Numerical initial value problems in ordinary differential equations. Englewood Cliffs: Prentice-Hall; 1971.
  • Hairer E, Wanner G. Solving ordinary differential equations II. Berlin: Springer; 1991.
  • Isaacson E, Keller HB. Analysis of numerical methods. New York: Wiley; 1966.
  • Chakrivat PC, Kamew MS. Stiffly stable second multi-step methods with higher order and improved stability regions. BIT. 1983;23:75–83.
  • Jeong JU. Stability of a periodic solution for fuzzy differential equations. J Appl Math Comput. 2003;13:217–222.
  • Vignes J. Discrete stochastic arithmetic for validating results of numerical software. Numer Alg. 2004;37:377–390.
  • Jezequel F, Chesneaux JM. CADNA: a library for estimating round-off error propagation. Comput Phys Commun. 2008;178:933–955.
  • Ma M, Friedman M, Kandel A. Numerical solution of fuzzy differential equations. Fuzzy Sets Syst. 1999;105:133–138.
  • Puri ML, Ralescu D. Differential for fuzzy function. J Math Anal Appl. 1983;91:552–558.
  • Seikkala S. On the fuzzy initial value problem. Fuzzy Sets Syst. 1987;24:319–330.
  • Chalco-Cano Y, Roman-Flores H. On new solutions of fuzzy differential equations. Chaos, Solitons and Fractals. 2008;38:112–119.