976
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fuzzy Analysis of Resonance Frequencies for Structural Inspection of an Engine Cylinder Block

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 266-276 | Received 17 Dec 2020, Accepted 22 Mar 2021, Published online: 28 Jun 2021

References

  • Marra M, Smyth JF. System and method for structural inspection and construction estimation using an unmanned aerial vehicle. Google Patents; 2019.
  • Esfandiari A, Nabiyan MS, Rofooei FRJSC, et al. Structural damage detection using principal component analysis of frequency response function data. Struct Contr Health Monit. 2020;27(7):e2550. DOI:https://doi.org/10.1002/stc.2550.
  • Sajedi SO, Liang X. Uncertainty-assisted deep vision structural health monitoring. Comput Aided Civ Infrastruct Eng. 2020. doi:https://doi.org/10.1111/mice.12580
  • Khalil A, Aljanaideh KF, Rideout G. Fault detection in flexible beams based on output only measurements. American Control Conference (ACC); 2020 1–3 July; Virtual: IEEE.
  • Taajobian M, Mohammadzaheri M, Doustmohammadi M, et al. Fault diagnosis of an automobile cylinder head using low frequency vibrational data. Mech Sci Technol. 2018;32(7):3037–3045.
  • Gao Z, Cecati C, Ding SX. A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans Ind Electron. 2015;62(6):3757–3767.
  • Abbas S, Li F, Qiu J, et al. Optimization of ultrasonic guided wave inspection in structural health monitoring based on thermal sensitivity evaluation. J Low Freq Noise Vibr Active Contr. 2015. DOI:https://doi.org/2020:1461348419886189
  • Yan Y, Cheng L, Wu Z, et al. Development in vibration-based structural damage detection technique. Mech Syst Signal Process. 2007;21(5):2198–2211.
  • Farrar CR, Doebling SW. An overview of modal-based damage identification methods. Proceedings of DAMAS Conference; 1997 30 June–2 July; Sheffiled, UK: Citeseer.
  • Yoon M, Heider D, Gillespie J, et al. Local damage detection using the two-dimensional gapped smoothing method. J Sound Vib. 2005;279(1):119–139.
  • Hou W, Zhang D, Wei Y, et al. Review on computer aided weld defect detection from radiography images. Appl Sci. 2020;10(5):1878. DOI:https://doi.org/10.3390/app10051878.
  • Martin RW, Sabato A, Schoenberg A, et al. Comparison of nondestructive testing techniques for the inspection of wind turbine blades’ spar caps. Wind Energy. 2018;21(11):980–996. doi:https://doi.org/10.1002/we.2208.
  • Papaelias M, Cheng L, Kogia M, et al. Inspection and structural health monitoring techniques for concentrated solar power plants. Renew Energy. 2016;85:1178–1191. DOI:https://doi.org/10.1016/j.renene.2015.07.090.
  • Forsyth DS. Structural health monitoring and probability of detection estimation. 42nd Annual review of progress in qauntitative nondestructive evaluation; 2015 26–31 July; Minneapolis, USA: AIP Publishing LLC.
  • Morteza Mohammadzaheri AA, Ghodsi M, Bahadur I, et al. Health monitoring of welded pipelines with mechanical waves and fuzzy inference systems. International gas union research conference; 24–26 February; Muscat, Oman2020.
  • Hakim S, Razak HA, Ravanfar S. Fault diagnosis on beam-like structures from modal parameters using artificial neural networks. Measurement. 2015;76:45–61.
  • Hunt D, Weiss S, West W. Development and implementation of a shuttle modal inspection system. 8th International modal analysis conference; 1990; Kissimmee, USA.
  • Landau ID, Zito G. Digital control systems. London: Springer; 2006.
  • Abdo M-B, Hori M. A numerical study of structural damage detection using changes in the rotation of mode shapes. J Sound Vib. 2002;251(2):227–239.
  • Aydin K, Kisi O. Applicability of a fuzzy genetic system for crack diagnosis in Timoshenko beams. J Comput Civ Eng. 2014;29:5. DOI:https://doi.org/10.1061/(ASCE)CP.1943-5487.0000385
  • Doebling SW, Farrar CR, Prime MB. A summary review of vibration-based damage identification methods. Shock Vibr Dig. 1998;30(2):91–105.
  • Soltani P, Keikhosravy M, Oskouei R, et al. Studying the tensile behaviour of GLARE laminates: a finite element modelling approach. Appl Compos Mater. 2011;18(4):271–282. doi:https://doi.org/10.1007/s10443-010-9155-x.
  • Shabestari S, Rahmani M, Saeedinia S. Influence of metallurgical processes on structure and mechanical characteristics of Paykan 1600 aluminum cylinder head. The First Iranian Symposium of Internal Combustion Enginers; Tehran, Iran; 1999.
  • Jang JR, Sun C, Mizutani E. Neuro-fuzzy and soft computing. New Delhi: Prentice-Hall of India; 2006.
  • Mohammadzaheri M, Mirsepahi A, Asef-Afshar O, et al. Neuro-fuzzy modeling of superheating system of a steam power plant. Appl Math Sci. 2007;1:2091–2099.
  • Mohammadzaheri M, AlQallaf A, Ghodsi M, et al. Development of a fuzzy model to estimate the head of gaseous petroleum fluids driven by electrical submersible pumps. Fuzzy Inf Eng. 2018;10(1):99–106. DOI:https://doi.org/10.1080/16168658.2018.1509523.
  • Mehrabi D, Mohammadzaheri M, Firoozfar A, et al. A fuzzy virtual temperature sensor for an irradiative enclosure. J Mech Sci Technol. 2017;31(10):4989–4994. doi:https://doi.org/10.1007/s12206-017-0947-x.
  • Ghaffari A, Mehrabian AR, Mohammadzaheri M. Identification and control of power plant de-superheater using soft computing techniques. Eng Appl Artif Intell. 2007;20(2):273–287. doi:https://doi.org/10.1016/j.engappai.2006.06.006.
  • Mohammadzaheri M, Grainger S, Bazghaleh M. Fuzzy modeling of a piezoelectric actuator. Int J Prec Eng Manuf. 2012;13(5):663–670.
  • Mohammadzaheri M, Chen L, Ghaffari A, et al. A combination of linear and nonlinear activation functions in neural networks for modeling a de-superheater. Simul Model Pract Theory. 2009;17(2):398–407. DOI:https://doi.org/10.1016/j.simpat.2008.09.015.
  • Mohammadzaheri M, Ghanbari M, Mirsepahi A. Efficient neuro-predictive control of a chemical plant. 5th Symposium on Advance in Science and Technology; 2011 12–17 May; Mashad, Iran.
  • Bhattacharyay D, Kocaefe D, Kocaefe Y, et al. An artificial neural network model for predicting the CO2 reactivity of carbon anodes used in the primary aluminum production. Neural Comput Appl. 2017;28(3):553–563. DOI:https://doi.org/10.1007/s00521-015-2093-7.
  • Mohammadzaheri M, Ziaeifar H, Bahadur I. Data-driven modelling of engineering systems with small data, a comparative study of artificial intelligence techniques. 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS); 2019 18–19 December; Shahrood, Iran: IEEE.
  • Lendasse A, Wertz V, Verleysen M. Model selection with cross-validations and bootstraps – application to time series prediction with RBFN models. Artificial neural networks and neural information processing; 2003 26–29 June; Istanbul, Turkey.