34
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Autosomal Recessive Nonsyndromic Hearing Impairment: an Overview

, &
Pages 12-20 | Published online: 11 Jul 2009

REFERENCES

  • Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S, Wilcox ER. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. American Journal of Human Genetics 2001; 69: 25–34.
  • Angst BD, Marcozzi C, Magee AI. The cadherin superfamily: diversity in form and function. Journal of Cell Science 2001; 114: 629–41.
  • Baldwin CT, Weiss S, Farrer LA, DeStefano AL, Adair R, Franklyn B, Kidd KK, Korotishevsky M, Bonne-Tamir B. Linkage of congenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population. Human Molecular Genetics 1995; 4: 1637—42.
  • Bergstrom L, Hemenway WG, Down MP. A high risk registry to find congenital deafness. Otolaryngology Clinics of North America 1971; 4: 369—99.
  • Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VP, Milla PJ, Hussain K, Furth-Lavi J, Cosgrove KE, Shepherd RM, Barnes PD, O’Brien RE, Farndon PA, Sowden J, Liu X-Z, Scanlan MJ, Malcolm S, Dunne MJ, Aynsley-Green A, Glaser B. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nature Genetics 2000; 26: 56—60.
  • Bolz H, von Brederlow B, Ramirez A, Bryda EC, Kutsche K, Nothwang HG, Seeliger M, Cabrera MC-S, Vila MC, Molina OP, Gal A, Kubisch C. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nature Genetics 2001; 27: 108—112.
  • Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CRS, Wayne S, Bellman S, Desmukh D, Ahmed Z, Khan SN, Der Kaloustain VM, Li XC, Lalwani A, Riazuddin S, Bitner-Glindzicz M, Nance WE, Liu X-Z, Wistow G, Smith RJH, Griffith AJ, Wilcox ER, Friedman TB, Morell RJ. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. American Journal of Human Genetics 2001; 68: 26—37.
  • Chung CS, Brown KS. Family studies of early childhood deafness ascertained through the Clarke School for the Deaf. American Journal of Human Genetics 1970; 22: 630—44.
  • Coyle B, Reardon W, Herbrick JA, Tsui LC, Gausden E, Lee J, Coffey R, Gruetrs A, Grossman A, Phelps PD, Luxon L, Kendall-Taylor P, Schere SW, Trembath RC. Molecular analysis of the PDS gene in Pendred syndrome (sensorineural hearing loss and goitre). Human Molecular Genetics 1998; 7: 1105—12.
  • Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen-Powell DR, Osborn AH, Dahl H-HM, Middleton A, Houseman MJ, Dode C, Marlin S, Boulila-ElGaied A, Grati M, Ayadi H, BenArab S, Bitoun P, Lina-Granade G, Godet J, Mustapha M, Loiselet J, El-Zir E, Aubois A, Joannard A, Petit C. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Human Molecular Genetics 1997; 6: 2173—77.
  • Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Steel KP, Noben-Trauth K. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nature Genetics 2001; 27: 103—7.
  • El-Amraoui A, Sahly I, Picaud S, Sahel J, Abitbol M, Petit C. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Human Molecular Genetics 1996; 5: 1171—78.
  • Everett LA, Glasser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nature Genetics 1997; 17: 411—22.
  • Everett LA, Morsli H, Wu DK, Green ED. Expression pattern of the mouse ortholog of the Pendred’s syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proceedings of the National Academy of Sciences, USA 1999; 96: 9727—32.
  • Fraser GR The causes of profound deafness in childhood. Baltimore, Johns Hopkins University Press, Baltimore, 1976.
  • Frenz CM, Van de Water R. Immunolocalisation of connexin 26 in the developing cochlea. Brain Research Reviews 2000; 32: 172—80.
  • Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. Journal of Cell Biology 1999; 147: 891—903.
  • Gabriel HD, Jung D, Butzler C, temme, A, Traub, O, Winterhager, E, Willecke K. Transplacental uptake of glucose is decreased in embryoinc lethal connexin26-deficient mice. Journal of Cell Biology 1998; 140: 1453—61.
  • Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SDM. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 1995; 374: 62—4.
  • Guilford P, Ben Arab S, Blanchard S, Levilliers J, Weissenbach J, Belkhaia A, Petit A. a non-syndromic form of neurosensory recessive deafness maps to the pericentromeric region of chromosome 13q. Nature Genetics 1994a; 36: 24—8.
  • Guilford P, Ayadi H, Blanchard S, Chaib H, Le Paslier D, Wiessenbach J, Drira M, Petit C. A human gene responsible for neurosensory, non-syndromic recessive deafness is a candidate homologue of the mouse sh-1 gene. Human Molecular Genetics 31994b, pp. 989—93.
  • Hasson T, Walsh J, Cable J, Mooseker MS, Brown SD, Steel KP. Effects of shaker-1 mutations on myosin-VIIA protein and mRNA expression. Cell Motility and the Cytoskeleton 1997; 37: 127—38.
  • Houseman MJ, Jackson AP, Al-Gazali LI, Badin RA, Roberts E, Mueller RF. A novel mutation in a family with nonsyndromic sensorineural hearing loss that disrupts the newly characterised OTOF long isoforms. Journal of Medical Genetics 2001; 38: E25.
  • Kimberling WJ, Moller CG, Davenport S, Priluck IA, Beighton PH, Greenberg J, Reardon W, Weston MD, Kenyon JB, Grunkemeyer JA. Linkage of Usher syndrome type 1 gene (USH1B) to the long arm of chromosome 11. Genomics 1992; 14: 988—94.
  • Kimberling WJ, Dahl SP, Weston MD. Usher syndrome type 1. In: GeneReviews at GeneTests-GeneClinics: Medical Genetics Information Resource (database online). University of Washington, Seattle. http://www.geneclinics.org. 2001.
  • Kros CJ, Marcoti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nature Neuroscience 2002; 5: 41—7.
  • Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed M, Naz S, Arnaud D, Drury S, Mo J, Makishima T, Ghosh M, Menon PSN, Desmukh D, Oddoux C, Ostrer C, Khan S, Riazzudin S, Deininger PL, Hampton LL, Sullivan SL, Battey JF, Keats BJB, Wilcox E, Friedman TB, Griffith AJ. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nature Genetics 2002, pp. In press.
  • Lander ES, Botstein D. Homozygosity mapping: A way to map human recessive traits with the DNA of inbred children. Science 1987; 236: 1567—70.
  • Li XC, Everett LA, Lalwani AK, Desmukh D, Friedman TB, Green Ed, Wilcox ER. A mutation in PDS causes nonsyndromic recessive deafness. Nature Genetics 1998; 18: 215—17.
  • Liu X-Z, Walsh J, Mburu P, Kendrick-Jones J, Cope MJTV, Steel KP, Brown SDM. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nature Genetics 1997; 16: 188—90.
  • Liu XZ, Xia XJ, Xu LR, Pandya A, Liang CY, Blanton SH, Brown SD, Steel KP, Nance WE. Mutations in connexin 31 underlie recessive as well as dominant non-syndromic hearing loss. Human Molecular Genetics 2000; 9: 63—7.
  • Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE. Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Human Molecular Genetics 2001; 10: 2945—51.
  • Maw MA, Allen-Powell DR, Goodey RJ, Stewart IA, Nancarrow DJ, Hayward NK, Gardner RJM. The contribution of the DFNB1 locus to neurosensory deafness in a Caucasian population. American Journal of Human Genetics 1995; 57: 629—635.
  • Morton NE. Genetic epidemiology of hearing impairment. Annals of the New York Academy of Sciences 1991; 630: 16—31.
  • Mustapha M, Weil D, Chardenoux S, Elias S, El-Zir E, Beckman JS, Loiselet J, Petit C. An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Human Molecular Genetics 1999; 8: 409—12.
  • Navarroy Coy NC, Hutchin TP, Conlon HE, Coghill EL, Middleton A, Rowland JS, Taylor GR, Bishop T, Trembath RC, Brown SDM, Mueller RF. The relative contribution of mutations in the DFNB loci to congenital/early childhood non-syndromal sensorineural hearing impairment/deafness. American Journal of Human Genetics 2001; 69: 1509S.
  • Newton V. Aetiology of bilateral sensorineural hearing loss in young children. Journal of Laryngology and Otology (suppl), 1985; 10: 1—57.
  • Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. Journal of Molecular Biology 2000; 299: 551—72.
  • Ouyang XM, Xia JX, Hutchin TP, Petit C, Pandya A, Du LL, Mueller RF, Nance WE, Liu XZ Missense mutations in USH1C and CDH23 cause non-syndromic autosomal recessive deafness. Association for Research in Otolaryngology meeting, Florida, 2002.
  • Parving A. Epidemiology of hearing loss and aetiological diagnosis of hearing impairment in childhood. International Journal of Paediatric Otorhinolaryngology 1983; 5: 151—65.
  • Pendred V. Deaf-mutism and goiter. The Lancet 1896; ii: 532.
  • Phelps PD, Coffey RA, Trembath RC, Luxon LM, Grossman AB, Britton KE, Kendall-Taylor P, Graham JM, Cadge BC, Stephens SG, Pembrey ME, Reardon W. Radiological malformations of the ear in Pendred syndrome. Clinical Radiology 1998; 53: 268—73.
  • Probst FJ, Friedell RA, Raphael Y, Saunders TL, Wang A, Liang Y, Morell RJ, Touchman JW, Lyons RH, Noben-Trauth K, Friedman TB, Camper SA. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 1998; 280: 1444—47.
  • Reardon W, Coffey R, Phelps PD, Luxon LM, Stephens D, Kendall-Taylor P, Britton KE, Grossman A, Trembath R. Pendred syndrome — 100 years of underascertainment? Quarterly Journal of Medicine 1997; 90: 443—47.
  • Riazuddin S, Castelein CM, Ahmed ZM, Lalwani AK, Mastroianni MA, Naz S, Smith TN, Liburd NA, Friedman TB, Griffith AJ, Riazuddin S, Wilcox ER. Dominant modifier DFNM1 suppresses recessive deafness DFNB26. Nature Genetics 2000; 26: 431—34.
  • Rizo J, Sudhof TC. Mechanics of membrane fusion. Nature Structural Biology 1998; 5: 839—42.
  • Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nature Genetics 1999; 21: 440—43.
  • Scott DA, Wang R, Kreman TM, Andrews M, McDonald JM, Bishop JR, Smith RJH, Karniski LP, Sheffield VC. Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Human Molecular Genetics 2000; 9: 1709—15.
  • Scott HS, Kudoh J, Wattenhofer M, Shibuya K, Berry A, Chrast R, Guipponi M, Wang J, Kawasaki K, Asakawa S, Minoshima S, Younus F, Mehdi SQ, Radhakrishna U, Papasavvas MP, Gehrig C, Rossier C, Korostishevsky M, Gal A, Shimizu N, Bonne-Tamir B, Antonarakis SE. Insertion of beta-repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nature Genetics 2001; 27: 59—63.
  • Self T, Mahony M, Flemming J, Walsh J, Brown SD, Steel KP. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 1998; 125: 557—66.
  • Steel KP, Bock GR. Hereditary inner-ear abnormalities in animals. Relationships with human abnormalities. Archives of Otolaryngology 1983; 109: 22—9.
  • Tamagawa Y, Kitamura K, Ishida T, Ishikawa K, Tanaka H, Tsuji S, Nishizawa M. A gene for a dominant form of nonsyndromic sensorineural deafness (DFNA11) maps within the region containing the DFNB2 recessive deafness gene. Human Molecular Genetics 1996; 5: 849—52.
  • van Camp G, Smith RJH. Hereditary Hearing Loss Home Page. 2001 World Wide Web URL: http://dnalab-www.uia.ac.be/ dnalab/hhh/.
  • Verhoeven K, Van Laer L, Kirschofer K, Legan PK, Hughes DC, Schutterman I, Verstreken M, Van Hauwe P, Coucke P, Chen A, Smith RJH, Somers T, Offeciers FE, Van de Heyning P, Richardson GP, Wachtler F, Kimberling WJ, Willems PJ, Govaerts PJ, Van Camp G. Mutations in the human alpha-tectorin gene cause autosomal dominant nonsyndromic hearing impairment. Nature Genetics 1998; 19: 60—2.
  • Verpy E, Leibovici M, Zwaenpoel I, Liu X-Z, Gal A, Salem N, Mansour A, Blanchard S, Kobayashi I, Keats BJB, Slim R, Petit C. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nature Genetics 2000; 26: 51—5.
  • Verpy E, Masmoudi S, Zwaenpoel I, Leibovici M, Hutchin TP, Del Castillo I, Nouaille S, Blanchard S, Laine S, Popot J-L, Moreno F, Mueller RF, Petit C. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nature Genetics 2001; 29: 345—49.
  • Veske A, Oehlmann R, Younus F, Mhyuddin A, Muller-Myhsok B, Mehdi SQ, Gal A. Autosomal recessive non-syndromic deafness locus (DFNB8) maps on chromosome 21q22 in a large consanguineous kindred from Pakistan. Human Molecular Genetics 1996; 5: 165—68.
  • Vreduge S, Erven A, Kros CJ, Marcotti W, Fuchs H, Kurima K, Wilcox ER, Friedman TB, Griffith AJ, Balling R, Hrabe de Angelis, M, Avraham, KB, Steel KP. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nature Genetics 2002, pp. In press.
  • Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW, Morton CC, Morell RJ, Noben-Trauth K, Camper SA, Friedman TB. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 1998; 280: 1447—51.
  • Weil D, Levy G, Sahly I, Levi-Acobas F, Blanchard S, El-Amraoui A, Crozet F, Philippe H, Abitbol M, Petit C. Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proceedings of the National Academy of Sciences, USA, 1996; 93: 3232—37.
  • Weil D, Kussel P, Blanchard S, Levy G, Levi-Acobas F, Drira M, Ayadi H, Petit C. The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defect of the myosin-VIIA gene. Nature Genetics 1997; 16: 191—3.
  • Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Plopis B, Belyatseva L, Ben-Yosef T, Liburd NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Riazuddin S, Friedman TB. Mutations in a gene encoding tight junction claudin-14 cause recessive deafness DFNB29. Cell 2001; 104: 165—72.
  • Winata S, Nyoman Arhya I, Moeljopawiro S, Hinnant JT, Liang Y, Friedman TB, Asher JH. Congenital non-syndromal autosomal recessive deafness in Bengkala, an isolated Balinese village. Journal of Medical Genetics 1995; 32: 336—343.
  • Xia AP, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T. Expression of connexin 31 in the developing mouse cochlea. Neuroreport 2000; 11: 2449—53.
  • Yasunaga S, Grati M, Cohen-Salmon M, El-Amraoui A, Mustapha M, Salem N, El-Zir E, Loiselet J, Petit C. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nature Genetics 1999; 21: 363–9.
  • Yasunaga S, Grati M, Chardenoux S, Smith TN, Friedman TB, Lalwani AK, Wilcox ER, Petit C. OTOF encodes multiple long and short isoforms: genetic evidence that the long ones underlie recessive deafness DFNB9. American Journal of Human Genetics 2000; 67: 591–600.
  • Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Mila M, Della Monica M, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Human Molecular Genetics 1997; 6: 1605–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.