13
Views
0
CrossRef citations to date
0
Altmetric
Original

Protective effects of minocycline and MDL 28170 in gentamicin ototoxicity

, , , , &
Pages 134-143 | Published online: 11 Jul 2009

References

  • Forge A, Schacht J. Aminoglycoside antibiotics. Audiol & Neuro-Otol. 2000; 5: 3–22
  • Tablan OC, Reyes MP, Rintelmann WF, Lerner AM. Renal and auditory toxicity of high-dose, prolonged therapy with gentamicin and tobramycin in Pseudomonas endocarditis. J Infect Dis. 1984; 149: 257–63
  • Hawkins JE. Drug ototoxicity. Handbook of Sensory Physiology, WD Keidel, WD Neff. Springer, Berlin 1976; 707–48
  • Rüedi L, Furrer W, Graf K, Nager G, Tschirren B, Luthy F. Nouvelles constatations sur la toxicité de la streptomycine et de la quinine à l'egard de l'oreille du cobaye. Rev Laryngol. 1951; 72: 238–64
  • Rüedi L, Furrer W, Luthy F, Nager G, Tschirren B. Further observations concerning the toxic effects of streptomycin and quinine on the auditory organ of guinea pig. Laryngoscope 1952; 62: 333–57
  • Hawkins JE. Ototoxic mechanisms: a working hypothesis. Audiology 1973; 12: 383–93
  • Johnsson LG, Hawkins JE, Kingsley TC, Black FO, Matz GJ. Aminoglycoside-induced cochlear pathology in man. Acta Otolaryngol. 1981; 383: 1–19
  • Sha SH, Schacht J. Salicylate attenuates gentamicin-induced ototoxicity. Lab Invest. 1999; 79: 807–81
  • Satoh T, Enokido Y, Kubo T, Yamada M, Hatanaka H. Oxygen toxicity induces apoptosis in neuronal cells. Cell Mol Neurobiol. 1998; 18: 649–66
  • Pierson MJ, Moller AR. Prophylaxis of kanamycin-induced ototoxicity by a radioprotectant. Hear Res. 1981; 4: 79–87
  • Garetz SL, Altschuler RA, Schacht J. Attenuation of gentamicin ototoxicity by glutathione in the guinea pig in vivo. Hear Res. 1994; 77: 81–7
  • Bertolaso L, Bindini D, Previati M, Falgione D, Lanzoni I, Parmeggiani A, et al. Gentamicin-induced cytotoxicity involves protein kinase c activation, glutathione extrusion and malondialdehyde production in an immortalized cell line from the organ of Corti. Audiol & Neurootol. 2003; 8: 38–48
  • Clerici WJ, Hensley K, DiMartino DL, Butterfield DA. Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear Res. 1996; 98: 116–24
  • Wang KKW, Nath R, Raser KJ, Hajimohammadreza I. Maitotoxin induces calpain activation in SH-SY5Y neuroblastoma cells and cerebrocortical cultures. Arch Biochem Biophys. 1996; 331: 208–14
  • Dulon D, Zajic G, Aran JM, Schacht J. Aminoglycoside antibiotics impair calcium entry but not viability and motility in isolated cochlear outer hair cells. J Neurosci Res. 1989; 24: 338–46
  • Brown AM, McDowell B, Forge A. Acoustic distortion products can be used to monitor the effects of chronic gentamicin treatment. Hear Res. 1989; 42: 143–56
  • Li L, Forge A. Cultured explants of the vestibular sensory epithelia from adult guinea pigs and effects of gentamicin: a model for examination of hair cell loss and epithelial repair mechanism. Aud Neurosci. 1995; 1: 111–25
  • Nakagawa T, Yamane H, Takayama M, Sunami K, Nakai Y. Apoptosis of guinea pig cochlear hair cells following chronic aminoglycoside treatment. Eur Arch Otorhinolaryngol. 1998; 255: 127–31
  • Pörn-Ares MI, Ares MPS, Orrenius S. Calcium signalling and the regulation of apoptosis. Toxicology in vitro 1998; 12: 539–43
  • Wood DE, Newcomb EW. Caspase-dependent activation of calpain during drug-induced apoptosis. J Biol Chem. 1999; 274: 8309–15
  • Jung BJ, Jung YK. Calpeptin suppresses tumour necrosis factor-α-induced death and accumulation of p53 in L929 mouse sarcoma cells. Apoptosis 2002; 7: 115–21
  • Ruiz-Vela A, Gonzalez de Buitrago G, Martinez AC. Implication of calpain in caspase activation during B-cell clonal deletion. EMBO J. 1999; 18: 4988–98
  • Nakagawa T, Yuan J. Cross-talk between two cysteine protease families: activation of caspase-12 by calpain in apoptosis. J Cell Biol. 2000; 150: 887–94
  • Lanzoni I, Corbacella E, Ding D, Previati M, Salvi R. MDL 28170 attenuates gentamicin ototoxicity. Audiol Med. 2005; 3: 82–9
  • Perrin BJ, Huttenlocher A. Molecules in focus calpain. Intern J Biochem & Cell Biol. 2002; 34: 722–5
  • Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J. 1997; 328: 721–32
  • Saito K, Elce JS, Hamos JE, Nixon RA. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer's disease: a potential molecular basis for neuronal degeneration. Proc Nat Acad Sci. USA 1993; 90: 2628–32
  • Stracher A. Calpain inhibitors as neuroprotective agents in neurodegenerative disorders. Intern Tinnitus J. 1997; 3: 71–5
  • Saatman KE, Murai H, Bartus RT, Smith DH, Hayward NJ, Perri BR, McIntosh TK. Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat. Proc Nat Acad Sci. USA 1996; 93: 3428–33
  • Nath R, Raser KJ, McGinnis K, Nadimpalli R, Stafford D, Wang KK. Effects of ICE-like protease and calpain inhibitors on neuronal apoptosis. Neuroreport 1996; 8: 249–55
  • Jordan J, Galindo MF, Miller RJ. Role of calpain- and interleukin-1 beta converting enzyme-like proteases in the beta-amyloid-induced death of rat hippocampal neurons in culture. J Neurochem. 1997; 68: 1612–21
  • Ray Swapan K, Hogan Edward L, Banik Naren L. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Rev. 2003; 42: 169–85
  • Squier MKT, Cohen JJ. Calpain, an upstream regulator of thymocyte apoptosis. J Immunol. 1997; 158: 3690–7
  • Cheng AG, Huang T, Stracher A, Kim A, Liu W, Malgrange B, et al. Calpain inhibitors protect auditory sensory cells from hypoxia and neurotrophin-withdrawal induced apoptosis. Brain Res. 1999; 850: 234–43
  • Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309–12
  • Seshagiri S, Miller LK. Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis. Curr Biol. 1997; 7: 455–60
  • Gorman AM, Orrenius S, Ceccatelli S. Apoptosis in neuronal cells: role of caspases. Neurorep. 1998; 9: 49–55
  • Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res. 2000; 256: 50–7
  • Colovic M, Caccia S. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat. J Chromatogr B Analyt Technol Biomed Life Sci. 2003; 791: 337–43
  • Wei X, Zhao L, Liu J, Dodel RC, Farlow MR, Du Y. Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation. Neuroscience 2005; 2: 513–21
  • Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Path. 1966; 45: 493–6
  • Hashino E, Shero M, Salvi RJ. Lysosomal targeting and accumulation of aminoglycoside antibiotics in sensory hair cells. Brain Res. 1997; 777: 75–85
  • Löwenheim H, Kil J, Gültig K, Zenner HP. Determination of hair cell degeneration and hair cell death in neomycin treated cultures of the neonatal rat cochlea. Hear Res. 1999; 128: 16–26
  • Mather M, Rottenberg H. Polycations induce the release of soluble intermembrane mitochondrial proteins. Biochim Biophys Acta. 2001; 1503: 357–68
  • Kromer G, Reed J. Mitochondrial control of cell death. Nat Med. 2000; 6: 513–9
  • Loeffler M, Kroemer G. The mitochondrion in cell death control: certainties and incognita. Exp Cell Res. 2000; 256: 19–26
  • Liu W, Staecker H, Stupak H, Malgrange B, Lefebvre P, van der Water TR. Caspase inhibitors prevent cisplatin-induced apoptosis of auditory sensory cells. Neuroreport 1998; 9: 2609–14
  • Chen ZF, Schottler F, Lee KS. Neuronal recovery after moderate hypoxia is improved by the calpain inhibitor MDL28170. Brain Res. 1997; 769: 188–92
  • Ding D, Stracher A, Salvi RJ. Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity. Hear Res. 2002; 164: 115–26
  • McCollum AT, Nasr P, Estus S. Calpain activates caspase-3 during UV-induced neuronal death but only calpain is necessary for death. J Neurochem. 2002; 82: 1208–20
  • Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R. Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem. 2003; 278: 14162–7
  • Mehdi S. Cell-penetrating inhibitors of calpain. Trends Biochem Sci. 1999; 16: 150–3
  • Boland B, Campbell V. β-amyloid(1–40)-induced apoptosis of cultured cortical neurons involves calpain-mediated cleavage of poly-ADP-ribose polymerase. Neurobiology of Aging 2003; 24: 179–86
  • Citron M, Diehl TS, Gordon G, Biere AL, Seubert P, Selkoe DJ. Evidence that the 42- and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities. Proc Natl Acad Sci. USA 1996; 93: 13170–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.