95
Views
7
CrossRef citations to date
0
Altmetric
Original

The value of otoacoustic emissions in the investigation of noise damage

Pages 10-24 | Published online: 11 Jul 2009

References

  • Kemp DT. Stimulated acoustic emissions from within the human auditory system. J. Acoust Soc Am 1978; 64: 1386–91
  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science 1985; 227: 194–6
  • Zenner HP. Motile responses in outer hair cells. Hear Res 1986; 22: 83–90
  • LePage EL. A review of mechanical evidence for servo-loop in the mammalian cochlea. Acoustics Australia 2006; 43: 43–9
  • Kemp DT. Evidence of mechanical non-linearity and frequency selective wave amplification in the cochlea. Arch Otol Laryngol 1979; 224: 37–45
  • Kemp DT. Otoacoustic emissions, their origin in cochlear function, and use. Bri Med Bull 2002; 63: 223–41
  • Ćeranić B. Otoacoustic Emissions. Textbook of Audiological Medicine, L Luxon, J Furman, A Martini, SDG Stephens. Taylor and Francis, London 2003; 259–70
  • Probst R, Lonsbury-Martin BL, Martin GK. A review of otoacoustic emissions. J Acoust Soc Am 1991; 89: 2027–67
  • Probst R, Lonsbury-Martin BL, Martin GK, Coats AC. Otoacoustic emissions in ears with hearing loss. Am J Otolaryngol 1987; 8: 73–80
  • Bonfils P. Spontaneous otoacoustic emissions: clinical interest. Laryngoscope 1989; 99: 752–6
  • Harris FB, Probst R, Wenger R. Repeatability of transiently evoked otoacoustic emissions in normal-hearing humans. Audiology 1990; 30: 135–41
  • Franklin DJ, McCoy MJ, Martin GK, Lonsbury-Martin BL. Test/retest reliability of distortion-product and transiently evoked otoacoustic emissions. Ear Hear 1992; 13: 417–29
  • Engdahl B, Arnesen AR, Mair IWS. Reproducibility and short-term variability of transient evoked otoacoustic emissions. Scand Audiol 1993; 23: 99–104
  • Moulin A, Collet L, Veuillet E, Morgon A. Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects. Hear Res 1993; 65: 216–33
  • Probst R, Harris FP. Transiently evoked and distortion product otoacoustic emissions. Arch Otolaryngol Head Neck Surg 1993; 119: 858–60
  • Avan P, Bonfils P. Frequency specificity of human distortion product otoacoustic emissions. Audiology 1993; 32: 12–26
  • Lonsbury-Martin BL, McCoy MJ, Whitehead ML, Martin GK. Clinical testing of distortion product otoacoustic emissions. Ear Hear 1993; 1: 11–22
  • Rasmussen G. The olivary peduncle and other fibre projections of the superior olivary complex. J Comp Neurol 1946; 84: 141–219
  • Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A. Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 1990; 43: 251–62
  • Ryan S, Kemp DT, Hinchcliffe R. The influence of contralateral acoustic stimulation on click-evoked otoacoustic emissions in humans. Br J Audiol 1991; 25: 391–7
  • Ćeranić B, Prasher DK, Raglan E, Luxon LM. Tinnitus after head injury: Evidence from otoacoustic emissions. J Neurol Neurosurg Psych 1998; 65: 523–9
  • Wiederhold ML. Physiology of the olivocochlear system. Neurobiology of hearing, the cochlea, R Altschuler, R Bobin, D Hoffman. Raven Press, New York 1986; 349–70
  • Mott JB, Norton SJ, Neely ST, Warr WB. Changes in spontaneous otoacoustic emissions produced by acoustic stimulation on the contralateral ear. Hear Res 1989; 38: 229–42
  • Harrison WA, Burns EM. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J Acoust Soc Am 1993; 94: 2649–58
  • Moulin A, Collet L, Duclaux R. Contralateral auditory stimulation alters acoustic distortion products in humans. Hear Res 1993; 65: 193–210
  • Veuillet E, Duverdy-Bertholon F, Collet L. Effect of contralateral acoustic stimulation on the growth of click-evoked otoacoustic emissions in humans. Hear Res 1996; 93: 128–35
  • Puria S, Guinan JJ, Jr, Liberman MC. Olivocochlear reflex assays: effects of contralateral sound on compound action potentials versus ear-canal distortion products. J Acoust Soc Am 1996; 99: 500–7
  • Huffman RF, Henson OW., Jr. The descending auditory pathway and acousticomotor system: connections with the inferior colliculus. Brain Res Rev 1990; 15: 295–323
  • Suga N, Gao E, Zhang Y, Ma X, Olsen JF. The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 2000; 97: 11807–14
  • Dolan DF, Nuttall AL. Masked cochlear whole-nerve response intensity functions altered by electrical stimulation of the crossed olivocochlear bundle. Acoust Soc Am 1988; 83: 1081–6
  • Bray P. Click-evoked Otoacoustic Emissions and the Development of a Clinical Otoacoustic Hearing Test Instrument. Doctoral Thesis, University of London, 1989.
  • Luz GA, Hodge DC. The recovery from impulse noise-induced TTS in monkeys and men: a descriptive model. J Acoust Soc Am 1971; 49: 1770–7
  • Henderson D, Hamernik RP, Sitler RW. Audiometric and histological correlates of exposure to 1-ms noise impulse in the chinchilla. J Acoust Soc Am 1974; 56: 1210–21
  • Cody AR, Johnstone BM. Electrophysiological and morphological correlates in the guinea pig cochlea after exposure to ‘impulsive’ noise. Scand Audiol. (Proceedings of International Symposium on effect of impulse noise on hearing, Malmö) 1980; (Suppl 12):121–7.
  • Henderson D, Spongr V, Subramaniam M, Campo P. Anatomical effects of impact noise. Hear Res 1994; 76: 101–17
  • Henderson D, Hamernik RP. A parametric evaluation of Equal Energy hypothesis. Basic and Applied Aspects of Noise-Induced Hearing Loss, RJ Salvi, D Henderson, RP Hamernik, V Colletti. Plenum Press, New York, London 1986; 369–78
  • Brüel PV. The influence of high crest factor noise on hearing damage. Scand Audiol Suppl. 12 (Proceedings of International Symposium on effect of impulse noise on hearing, Malmö) 1980;25–32.
  • Hamernik RP, Henderson D, Salvi R. Contribution of animal studies to our understanding of impulse noise-induced hearing loss. Scand Audiol (Proceedings of International Symposium on effect of impulse noise on hearing, Malmö) 1980;(Suppl 12):128–46.
  • Bonfils P, Uziel A. Clinical application of evoked otoacoustic emissions: results in normally hearing and hearing-impaired subjects. Ann Otol Rhinol Laryngol 1989; 98: 326–31
  • Nottet J-B, Moulin A, Brossard N, Benoit S, Job A. Otoacoustic emissions and persistent tinnitus after acute acoustic trauma. Laryngoscope 2006; 116: 970–5
  • Attias J, Horovitz G, El-Hatib N, Nageris B. Detection and clinical diagnosis of noise-induced hearing loss by otoacoustic emissions. Noise Health 2001; 3: 19–31
  • Lucertini M, Moleti A, Sisto R. On the detection of early cochlear damage by otoacoustic emission analysis. J Acoust Soc Am 2002; 111: 972–8
  • Bohne B, Clark WW. Growth of hearing loss and cochlear lesion with increasing duration of noise exposure. New perspectives on noise-induced hearing loss, RP Hamernik, D Henderson, RJ Salvi. Raven Press, New York 1982; 283–300
  • Reshef (Haran) I, Attias J, Furst M. Characteristics of click-evoked otoacoustic emissions in ears with normal hearing and with noise-induced hearing loss. Br J Audiol 1993; 27: 387–95
  • Kemp DT, Ryan S, Bray P. A guide to effective use of otoacoustic emissions. Ear Hear 1990; 11: 93–105
  • Prasher D, Luxon L, Mula M. The role of otoacoustic emissions in the evaluation of noise-induced hearing loss. In: Grandori F, editor. Advances in otoacoustic emissions: fundamentals and clinical application. Vol. 1. Commission of the European Communities 1994:74–84.
  • Hotz MA, Probst R, Harris FP, Hauser R. Monitoring of the effect of noise exposure using transiently evoked otoacoustic emissions. Acta Otolaryngol (Stochk) 1993; 113: 478–82
  • Ćeranić B, Prasher DK, Luxon LM. Changes in cochlear mechanics due to impulse noise. Proceedings of the European Conference on Audiology, R Schoonhofen, TS Kapteyn, de Laat. JAPM, Noordwijkerhhout 1995; 89–95
  • Seixas NS, Goldman B, Sheppard L, Neitzel R, Norton S, Kujawa SG. Prospective noise induced changes to hearing among construction industry apprentices. Occup Environ Med 2005; 62: 309–17
  • Konopka W, Zalewski P, Pietkiewicz P. Evaluation of transient and distortion products otoacoustic emissions before and after shooting practice. Health Noise 2001; 3: 29–37
  • Pawlaczyk-Luszczynska M, Dudarewicz A, Bak M, Fiszer M, Kotylo P, Sliwinska-Kowalska M. Temporary changes in hearing after exposure to shooting noise. Int J Occup Med Environ Health 2004; 17: 285–93
  • Sliwinska-Kowalska M, Kotylo P. Otoacoustic emissions in industrial hearing loss assessment. Noise Health. 2001; 3: 75–84
  • Axelsson A, Baranas M-L. Tinnitus in noise-induced hearing loss. Noise-induced hearing loss, A Dancer, D Henderson, RJ Salvi, RP Hamernik. Mosby Year Book, St Louis 1992; 269–76
  • Penner MJ. An estimate of the prevalence of tinnitus caused by spontaneous otoacoustic emissions. Arch Otolaryngol Head Neck Surg 1990; 116: 418–23
  • McShane DP, Hyde ML, Alberti PW. Tinnitus prevalence in industrial hearing loss compensation claimants. Clin Otolaryngol Allied Sci. 1988;13:323–30.
  • Chung DY, Gannon RP, Mason K. Factors affecting the prevalence of tinnitus. Audiology 1984; 23: 441–52
  • Man A, Naggan I. Characteristics of tinnitus. I. Acoustic trauma. Audiology 1981; 20: 70–8
  • Alberti PW. Tinnitus in occupational hearing loss: Nosological aspects. J Otolaryngol 1987; 16: 34–5
  • Wang J, Ding D, Salvi RJ. Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear changes. Hear Res 2002; 168: 238–49
  • Salvi RJ, Hamernik RP, Henderson D. Discharge patterns in the cochlear nucleus of the chinchilla following noise induced asymptotic threshold shift. Exp Brain Res 1978; 32: 301–20
  • Willot JF, Lu S-V. Noise-induced hearing loss can alter neural coding and increase excitability in the central nervous system. Science 1982; 216: 1331–2
  • Salvi RJ, Ahroon WA. Tinnitus and neural activity. J Speech Hear Res 1983; 26: 629–32
  • Zacharek MA, Kaltenbach JA, Mathog TA, Zhang J. Effects of cochlear ablation on noise induced hyperactivity in the hamster dorsal cochlear nucleus: implication for the origin of noise induced tinnitus. Hear Res 2002; 172: 137–44
  • Gerken GM. Central denervation hypersensitivity in the auditory system of the cat. J Acoust Soc Am 1979; 66: 721–7
  • Komiya H, Eggermont JJ. Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolayngol 2000; 120: 750–6
  • Eggermont JJ. Physiological mechanisms and neural models. Tinnitus handbook, R Tyler. Singular, San Diego 2000; 85–122
  • Ćeranić B, Prasher DK, Luxon LM. Presence of tinnitus indicated by variable spontaneous otoacoustic emissions. Audiol Neuro-Otol 1998; 3: 332–44
  • Ćeranić B, Prasher DK, Luxon LM. Tinnitus and otoacoustic emissions. Clin Otolaryngol. 1995; 20: 192–200
  • Ćeranić B. Tinnitus and external noise. In: Linda LM, Prasher DK, editiors. Noise and its Effects. London: Whurr Publishers; In press, 2006.
  • Kemp DT. Cochlear echoes: implications for noise-induced hearing loss. New perspectives on noise-induced hearing loss, RP Hamernik, D Henderson, R Salvi. Raven Press, New York 1981; 189–206
  • Kemp DT. Cochlear echoes: Implication for noise-induced hearing loss. New perspectives on noise-induced hearing loss, RP Hamernik, D Henderson, R Salvi. Raven Press, New York 1982; 189–206
  • Wilson JP. Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus. Hear Res. 1980; 2: 233–52
  • Wilson JP, Sutton GJ. Acoustic correlates of tonal tinnitus. Tinnitus (CIBA Foundation Symposium), D Evered, G Lawrenson. Pitman Books Ltd, London 1981; 82–107
  • Norton S, Schmidt AR, Stover LJ. Tinnitus and otoacoustic emissions: is there link?. Ear Hear 1990; 11: 159–66
  • Hazell JWP. A cochlear model of tinnitus. Proceedings. III. International Tinnitus Seminar, Münster, H Feldmann. Harsh Verlag, Karlsruhe 1987; 121–8
  • Chéry-Croze S, Collet L, Morgon A. Medial olivocochlear system and tinnitus. Acta Otolaryngol (Stochk) 1993; 113: 285–90
  • Attias J, Bresloff I, Furman V. The influence of the efferent auditory system on otoacoustic emissions in noise induced tinnitus: clinical relevance. Acta Otolaryngol (Stockh) 1996; 116: 534–9
  • Penner MJ. Two-tone forward masking patterns of tinnitus. J Speech Hear Res 1980; 23: 779–86
  • Collet L, Morgon A, Veuillet E, Gartner M. Noise and medial olivocochlear system in humans. Acta Otolaryngol (Stockh) 1991; 111: 231–3
  • Ruggero M, Rich N, Freyman R. Spontaneous and impulsively evoked otoacoustic emissions: indicators of cochlear pathology?. Hear Res 1983; 10: 285–93
  • Zurek PM, Clark WW. Spontaneous narrowband acoustic signals emitted by chinchilla ears after noise exposure. J Acoust Soc Am 1981; 70: 446–50
  • Powers NL, Salvi RJ, Wang J, Spongr V, Chun Xiao Q. Elevation of auditory thresholds by spontaneous cochlear oscillation. Nature. 1995; 375: 585–7
  • Axelsson A, Hamernik R. Acute acoustic trauma. Acta Otolaryngol (Stockh) 1987; 104: 225–33
  • Anari M, Axelsson A, Eliasson A, Magnusson L. Hypersensitivity to sound – questionnaire data, audiometry and classification. Scand Audiol. 1999; 28: 219–30
  • Szczepaniak WS, Møller AR. Effects of baclofen, clonazepam and diazepam on tone exposure-induced hyperexcitability of the inferior colliculus in rat: possible therapeutic implications for pharmacological management of tinnitus and hyperacusis. Hear Res 1996; 97: 46–53
  • Veuillet E, Collet L, Disant F, Morgon A. Tinnitus and medial cochlear efferent system. Tinnitus 91. Proceedings of the Fourth International Tinnitus Seminar, Bordeaux, JM Aran, R Dauman. Kugler Publications, Amsterdam/New York 1992; 205–9
  • Chéry-Croze S, Moulin A, Collet L, Morgon A. Is the test of medial efferent system function a relevant investigation in tinnitus?. Br J Audiol 1994; 28: 13–25
  • Collet L. Use of otoacoustic emissions to explore the medial olivocochlear system. Br J Audiol 1993; 27: 155–9
  • Attias J, Urbach D, Gold S, Shemesh Z. Auditory event related potentials in chronic tinnitus with noise induced hearing loss. Hear Res 1993; 71: 106–13
  • Attias J, Furman V, Shemesh Z, Bresloff I. Impaired brain processing in noise-induced tinnitus patients as measured by auditory and event-related potentials. Ear Hear 1996; 17: 327–33
  • Maison SF, Liberman MC. Predicting vulnerability to acoustic injury with non-invasive assay of olivocochlear reflex strength. J Neurosc 2000; 20: 4701–7
  • Maison SF, Luebke AE, Liberman MC, Zuo J. Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells. J Neurosci 2002; 15: 10838–46
  • Veuillet E, Collet L, Duclaux R. Effect of contralateral auditory stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables. J Neurophysiol 1991; 63: 724–35
  • Borg E. Efferent inhibition of afferent acoustic activity in the anaesthetized rabbit. Exp Neurol 1971; 31: 301–12
  • Whitehead ML, Martin GK, Lonsbury-Martin BL. Effects of the crossed acoustic reflex on distortion-product otoacoustic emissions in awake rabbits. Hear Res 1991; 51: 55–72
  • Joseph MP, Guinan JJ, Fullerton BC, Norris BE, Kiang NYS. Number and distribution of stapedial motor neurons in cats. J Comp Neurol 1985; 23: 43–54
  • Cody AR, Johnstone BM. Temporary threshold shift modified by binaural acoustic stimulation. Hear Res 1982; 6: 199–205
  • Cody AR, Johnstone BM. Acoustically evoked activity of single efferent neurons in the guinea pig cochlea. J Acoust Soc Am 1982; 72: 280–2
  • Takeyama M, Kusakari J, Nishikawa N, Wada T. The effect of crossed olivocochlear bundle stimulation on acoustic trauma. Acta Otolaryngol 1992; 112: 205–9
  • Rajan R. Protective functions of the efferent pathways to the mammalian cochlea: a review. Noise induced hearing loss, HL Dancer, D Henderson, RJ Salvi, RP Hamernik. Mosby Year Book, St. Louis 1992; 429–44
  • Liberman MC. The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury. J Neurophysiol 1991; 65: 123–32
  • Yamasoba T, Dolan DF, Miller JM. Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses. Hear Res 1999; 127: 31–40
  • Canlon B, Fransson A. Reducing noise damage by using a mid-frequency sound conditioning stimulus. Neuroreport 1998; 9: 269–74
  • Kujawa SG, Liberman MC. Long-term sound conditioning enhances cochlear sensitivity. J Neurophysiol 1999; 82: 863–73
  • Zheng XY, Henderson D, Hu BH, Ding DL, McFadden SL. The influence of the cochlear efferent system on chronic acoustic trauma. Hear Res 1997; 107: 147–59
  • Olds J. Unit recordings during Pavlovian conditioning. UCLA Forum in Medical Sciences 1975; 18: 343–71
  • Olds J, Nienhuis R, Olds ME. Patterns of conditioned unit responses in the auditory system of the rat. Exp Neurol 1978; 59: 209–28

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.