55
Views
4
CrossRef citations to date
0
Altmetric
Original

Pharmacological approaches to the prevention and treatment of cochlear injury due to noise

Pages 66-80 | Published online: 11 Jul 2009

References

  • Kopke RD, Coleman JK, Liu J, Campbell KC, Riffenburgh RH. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss. Laryngoscope. 2002; 112: 1515–32
  • Price GR. Predicting mechanical damage to the organ of Corti. In: International Symposium -Pharmacologic Strategies for Prevention and Treatment of Hearing Loss and Tinnitus. Niagra Falls, Ontario, Canada; 2005.
  • NIOSH. Preventing occupational hearing loss-a practical guide. 1995 [cited; NIOSH 1996 Oct:1-104:[Available from: http://www.cdc.gov/niosh/95-106.html.
  • Kopke RD. Combating hearing loss in the military. Hearing Health Fall. 2005;26–30.
  • Wolgemuth KS, Luttrell WE, Kamhi AG, Wark DJ. The effectiveness of the Navy's hearing conservation program. Mil Med. 1995; 160: 219–22
  • Bohnker BK, Page JC, Rovig G, Betts LS, Muller JG, Sack DM. US Navy and Marine Corps Hearing Conservation Program, 1995–1999: mean hearing thresholds for enlisted personnel by gender and age groups. Mil Med 2002; 167: 132–5
  • Landen D, Wilkins S, Stephenson M, McWilliams L. Noise exposure and hearing loss among sand and gravel miners. J Occup Environ Hyg. 2004; 1: 532–41
  • Beckett WS, Chamberlain D, Hallman E, May J, Hwang SA, Gomez M, et al. Hearing conservation for farmers: source apportionment of occupational and environmental factors contributing to hearing loss. J Occup Environ Med. 2000; 42: 806–13
  • Landon P, Breysse P, Chen Y. Noise exposures of rail workers at a North American chemical facility. Am J Ind Med. 2005; 47: 364–9
  • Seixas NS, Goldman B, Sheppard L, Neitzel R, Norton S, Kujawa SG. Prospective noise induced changes to hearing among construction industry apprentices. Occup Environ Med. 2005; 62: 309–17
  • Neitzel R, Seixas N. The effectiveness of hearing protection among construction workers. J Occup Environ Hyg. 2005; 2: 227–38
  • Slepecky N. Overview of mechanical damage to the inner ear: noise as a tool to probe cochlear function. Hear Res. 1986; 22: 307–21
  • Lim DJ, Melnick W. Acoustic damage of the cochlea. A scanning and transmission electron microscopic observation. Arch Otolaryngol. 1971; 94: 294–305
  • Lim DJ, Dunn DE. Anatomic correlates of noise induced hearing loss. Otolaryngol Clin North Am. 1979; 12: 493–513
  • Yamane H, Nakai Y, Takayama M, Konishi K, Iguchi H, Nakagawa T, et al. The emergence of free radicals after acoustic trauma and strial blood flow. Acta Otolaryngol Suppl (Stockh) 1995; 519: 87–92
  • Kopke RD, Allen KA, Henderson D, Hoffer M, Frenz D, van de Water T. A radical demise: toxins and trauma share common pathways in hair cell death. Ann N Y Acad Sci, New York 1999
  • Lynch ED, Kil J. Compounds for the prevention and treatment of noise-induced hearing loss. Drug Dis Today. 2005; 10: 1291–8
  • Hamernik RP, Turrentine G, Roberto M, Salvi R, Henderson D. Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res. 1984; 13: 229–47
  • Nordmann AS, Bohne BA, Harding GW. Histopathological differences between temporary and permanent threshold shift. Hear Res. 2000; 139: 13–30
  • Patuzzi R. Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma. Audiol Neurootol. 2002; 7: 17–20
  • Saunders JC, Flock A. Recovery of threshold shift in hair-cell stereocilia following exposure to intense stimulation. Hear Res. 1986; 23: 233–43
  • Liberman MC. Chronic ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res. 1987; 26: 65–88
  • Pickles JO, Osborne MP, Comis SD. Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig. Hear Res. 1987; 25: 173–83
  • Tsuprun V, Schachern PA, Cureoglu S, Paparella M. Structure of the stereocilia side links and morphology of auditory hair bundle in relation to noise exposure in the chinchilla. J Neurocytol. 2003; 32: 1117–28
  • Salvi RJ, Hamernik RP, Henderson D. Auditory nerve activity and cochlear morphology after noise exposure. Arch Otorhinolaryngol. 1979; 224: 111–6
  • Hamernik RP, Turrentine G, Roberto M. Mechanically induced morphological changes in the organ of Corti. Asic and applied aspects of noise-induced hearing loss, RJ Salvi, D Henderson, RP Hamernik, V Colletti. Plenum Press, London and New York 1986
  • Ahmad M, Bohne BA, Harding GW. An in vivo tracer study of noise-induced damage to the reticular lamina. Hear Res. 2003; 175: 82–100
  • Harris KC, Hu B, Hangauer D, Henderson D. Prevention of noise-induced hearing loss with Src-PTK inhibitors. Hear Res. 2005; 208: 14–25
  • Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001; 13: 555–62
  • Ohinata Y, Miller JM, Altschuler RA, Schacht J. Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res. 2000; 878: 163–73
  • Goldwin B, Kittan MJ, Shivapuja B, Seidman MD, Quirk WS. Sarthran preserves cochlear microcirculation and reduces temporary threshold shifts after noise. Otolaryn Head Neck Surg. 1998; 118: 576–83
  • Hatch M, Tsai M, LaRouere MJ, Nuttall AL, Miller JM. The effects of carbogen, carbon dioxide, and oxygen on noise-induced hearing loss. Hear Res. 1991; 56: 265–72
  • Latoni J, Shivapuja B, Seidman MD, Quirk WS. Pentoxifylline maintains cochlear microcirculation and attenuates temporary threshold shifts following acoustic overstimulation. Acta Oto-Laryngologica. 1996; 116: 388–94
  • Lamm K, Arnold W. Successful treatment of noise-induced cochlear ischemia, hypoxia, and hearing loss. Ann N Y Acad Sci. 1999; 884: 233–48
  • Lamm K, Arnold W. The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic po(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hear Res. 2000; 141: 199–219
  • Pujol R, Puel JL, Gervais d'Aldin C, Eybalin M. Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol. 1993; 113: 330–4
  • Puel JL, Ruel J, Gervais d'Aldin C, Pujol R. Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. Neuroreport. 1998; 9: 2109–14
  • Pujol R, Rebillard G, Puel JL, Lenoir M, Eybalin M, Recasens M. Glutamate neurotoxicity in the cochlea: a possible consequence of ischemic or anoxic conditions occurring in ageing. Acta Otolaryngol Suppl. 1990; 476: 32–6
  • Shi X, Nuttall AL. Up-regulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress. Brain Res. 2003; 967: 1–10
  • Sunami K, Yamane H, Takayama M, Nakagawa T, Konishi K, Iguchi H. Cystine protects cochlear outer hair cells against glutamate toxicity. Acta Otolaryngol. 1999; 119: 671–3
  • Chen GD, Kong J, Reinhard K, Fechter LD. NMDA receptor blockage protects against permanent noise-induced hearing loss but not its potentiation by carbon monoxide. Hear Res. 2001; 154: 108–15
  • Duan M, Agerman K, Ernfors P, Canlon B. Complementary roles of neurotrophin 3 and a N-methyl-D-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity. Proc Nat Acad Sci USA. 2000; 97: 7597–602
  • Khan MJ, Seidman MD, Quirk WS, Shivapuja BG. Effects of kynurenic acid as a glutamate receptor antagonist in the guinea pig. Eur Arch of Otorhinolaryngol. 2000; 257: 177–81
  • Chen Z, Ulfendahl M, Ruan R, Tan L, Duan M. Protection of auditory function against noise trauma with local caroverine administration in guinea pigs. Hear Res. 2004; 197: 131–6
  • Ohinata Y, Miller JM, Schacht J. Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Res. 2003; 966: 265–73
  • Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994; 330: 613–22
  • Scatton B. Excitatory amino acid receptor antagonists: a novel treatment for ischemic cerebrovascular diseases. Life Sci. 1994; 55: 2115–24
  • Attias J, Weisz G, Almog S, Shahar A, Wiener M, Joachims Z, et al. Oral magnesium intake reduces permanent hearing loss induced by noise exposure. Am J Otolaryngol. 1994; 15: 26–32
  • Joachims Z, Netzer A, Ising H, Rebentisch E, Attias J, Weisz G, et al. Oral magnesium supplementation as prophylaxis for noise-induced hearing loss: results of a double-blind field study. Schriftenr Ver Wasser Boden Lufthy. 1993; 88: 503–16
  • Ehrenberger K, Felix D. Caroverine depresses the activity of cochlear glutamate receptors in guinea pigs: in vivo model for drug-induced neuroprotection?. Neuropharmacology. 1992; 31: 1259–63
  • Haupt H, Scheibe F. Preventive magnesium supplement protects the inner ear against noise-induced impairment of blood flow and oxygenation in the guinea pig. Magnes Res. 2002; 15: 17–25
  • Sendowski I, Raffin F, Braillon-Cros A. Therapeutic efficacy of magnesium after acoustic trauma caused by gunshot noise in guinea pigs. Acta Otolaryngol. 2006; 126: 122–9
  • Attias J, Sapir S, Bresloff I, Reshef-Haran I, Ising H. Reduction in noise-induced temporary threshold shift in humans following oral magnesium intake. Clin Otolaryngol Allied Sci. 2004; 29: 635–41
  • Jiang H, Sha SH, Schacht J. NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity. J Neurosci Res. 2005; 79: 644–51
  • Lefebvre PP, Malgrange B, Lallemend F, Staecker H, Moonen G, van de Water TR. Mechanisms of cell death in the injured auditory system: otoprotective strategies. Audiol Neurootol. 2002; 7: 165–70
  • Vicente-Torres MA, Schacht J. A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J Neurosci Res. 2006; 83: 1564–72
  • Minami SB, Yamashita D, Schacht J, Miller JM. Calcineurin activation contributes to noise-induced hearing loss. J Neurosci Res. 2004; 78: 383–92
  • Uemaetomari I, Tabuchi K, Hoshino T, Hara A. Protective effect of calcineurin inhibitors on acoustic injury of the cochlea. Hear Res. 2005; 209: 86–90
  • Salvi RJ, Shulman A, Stracher A, Ding D, Wang J. Protecting the inner ear from acoustic trauma. Int Tinnitus J. 1998; 4: 11–5
  • Wang J, Ding D, Shulman A, Stracher A, Salvi RJ. Leupeptin protects sensory hair cells from acoustic trauma. Neuroreport. 1999; 10: 811–6
  • Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS. Role of xanthine oxidase inhibitor as free radical scavenger: a novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun. 1987; 148: 314–9
  • Seidman MD, Shivapuja BG, Quirk WS. The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage. Otolaryngol Head Neck Surg. 1993; 109: 1052–6
  • Franze A, Sequino L, Saulino C, Attanasio G, Marciano E. Effect over time of allopurinol on noise-induced hearing loss in guinea pigs. Int J Audiol. 2003; 42: 227–34
  • Galbusera C, Orth P, Fedida D, Spector T. Superoxide radical production by allopurinol and xanthine oxidase. Biochem Pharmacol. 2006; 71: 1747–52
  • Song BB, Schacht J. Variable efficacy of radical scavengers and iron chelators to attenuate gentamicin ototoxicity in guinea pig in vivo. Hear Res. 1996; 94: 87–93
  • Yamasoba T, Schacht J, Shoji F, Miller JM. Attenuation of cochlear damage from noise trauma by an iron chelator, a free radical scavenger and glial cell line-derived neurotrophic factor in vivo. Brain Res. 1999; 815: 317–25
  • Ryals B, Westbrook E, Schacht J. Morphological evidence of ototoxicity of the iron chelator deferoxamine. Hear Res. 1997; 112: 44–8
  • Ohlemiller KK, Wright JS, Dugan LL. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol. 1999; 4: 229–36
  • Yu N, Li X, Hu B. The effects of salicylate on noise-induced hearing loss in the guinea pig. Zhonghua Er Bi Yan Hou Ke Za Zhi. 1999; 34: 344–6
  • Tsujita K, Shimomura H, Kaikita K, Kawano H, Hokamaki J, Nagayoshi Y, et al. Long-term efficacy of edaravone in patients with acute myocardial infarction. Circ J. 2006; 70: 832–7
  • Tanaka K, Takemoto T, Sugahara K, Okuda T, Mikuriya T, Takeno K, et al. Post-exposure administration of edaravone attenuates noise-induced hearing loss. Eur J Pharmacol. 2005; 522: 116–21
  • Rao D, Fechter LD. Protective effects of phenyl-N-tert-butylnitrone on the potentiation of noise-induced hearing loss by carbon monoxide. Toxicol Appl Pharmacol. 2000; 167: 125–31
  • Fechter LD, Gearhart C, Shirwany NA. Acrylonitrile potentiates noise-induced hearing loss in rat. J Assoc Res Otolaryngol. 2004; 5: 90–8
  • Floyd RA, Kotake Y, Hensley K, Nakae D, Konishi Y. Reactive oxygen species in choline deficiency induced carcinogenesis and nitrone inhibition. Mol Cell Biochem. 2002; 234-235: 195–203
  • Canlon B, Fransson A. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning. Hear Res. 1995; 84: 112–24
  • McFadden SL, Henderson D, Shen YH. Low-frequency ‘conditioning’ provides long-term protection from noise-induced threshold shifts in chinchillas. Hear Res. 1997; 103: 142–50
  • Jacono AA, Hu B, Kopke RD, Henderson D, van de Water TR, Steinman HM. Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res. 1998; 117: 31–8
  • Hu BH, Zheng XY, McFadden SL, Kopke RD, Henderson D. R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla. Hear Res. 1997; 113: 198–206
  • Hight NG, McFadden SL, Henderson D, Burkard RF, Nicotera T. Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA. Hear Res. 2003; 179: 21–32
  • Rarey KE, Yao X. Localization of Cu/Zn-SOD and Mn-SOD in the rat cochlea. Acta Otolaryngol. 1996; 116: 833–5
  • Ohlemiller KK, McFadden SL, Ding DL, Flood DG, Reaume AG, Hoffman EK, et al. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol. 1999; 4: 237–46
  • Cassandro E, Sequino L, Mondola P, Attanasio G, Barbara M, Filipo R. Effect of superoxide dismutase and allopurinol on impulse noise-exposed guinea pigs: electrophysiological and biochemical study. Acta Otolaryngol. 2003; 123: 802–7
  • Seidman M, Babu S, Tang W, Naem E, Quirk WS. Effects of resveratrol on acoustic trauma. Otolaryngol Head Neck Surg. 2003; 129: 463–70
  • Hou F, Wang S, Zhai S, Hu Y, Yang W, He L. Effects of alpha-tocopherol on noise-induced hearing loss in guinea pigs. Hear Res. 2003; 179: 1–8
  • Pourbakht A, Yamasoba T. Ebselen attenuates cochlear damage caused by acoustic trauma. Hear Res. 2003; 181: 100–8
  • Lynch ED, Gu R, Pierce C, Kil J. Ebselen-mediated protection from single and repeated noise exposure in rat. Laryngoscope. 2004; 114: 333–7
  • Yamasoba T, Pourbakht A, Sakamoto T, Suzuki M. Ebselen prevents noise-induced excitotoxicity and temporary threshold shift. Neurosci Lett. 2005; 380: 234–8
  • Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, et al. Ebselen in acute middle cerebral artery occlusion: A placebo-controlled, double-blind clinical trial. Cerebrovasc Dis. 1999; 9: 112–8
  • Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, et al. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 1998; 29: 12–7
  • Yang CF, Shen HM, Ong CN. Intracellular thiol depletion causes mitochondrial permeability transition in ebselen-induced apoptosis. Arch Biochem Biophys. 2000; 380: 319–30
  • Guerin PJ, Gauthier ER. Induction of cellular necrosis by the glutathione peroxidase mimetic ebselen. J Cell Biochem. 2003; 89: 203–11
  • Meotti FC, Borges VC, Zeni G, Rocha JB, Nogueira CW. Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and ebselen for rats and mice. Toxicol Lett. 2003; 143: 9–16
  • McFadden SL, Woo JM, Michalak N, Ding D. Dietary vitamin C supplementation reduces noise-induced hearing loss in guinea pigs. Hear Res. 2005; 202: 200–8
  • Yamashita D, Jiang HY, Le Prell CG, Schacht J, Miller JM. Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience. 2005; 134: 633–42
  • Evans P, Halliwell B. Free radicals and hearing. Cause, consequence, and criteria. Ann N Y Acad Sci. 1999; 884: 19–40
  • Ohinata Y, Yamasoba T, Schacht J, Miller JM. Glutathione limits noise-induced hearing loss. Hear Res. 2000; 146: 28–34
  • Yamasoba T, Harris C, Shoji F, Lee RJ, Nuttall AL, Miller JM. Influence of intense sound exposure on glutathione synthesis in the cochlea. Brain Res. 1998; 804: 72–8
  • Campbell KCM, Meech RP, Jackson RL, Hughes LF, Rybak LP, Coleman JKM, et al. Noise exposure alters cochlear oxidized and reduced glutathione levels as a function of exposure duration in the chinchilla. Assoc Res Otolaryngol Abs. 2003; 26: 166
  • Ohlemiller KK, McFadden SL, Ding DL, Lear PM, Ho YS. Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol. 2000; 1: 243–54
  • Henderson D, Hu B, McFadden S, Zheng X. Evidence of a common pathway in noise-induced hearing loss and carboplatin ototoxicity. Noise Health. 1999; 2: 53–70
  • Kopke R, Bielefeld E, Liu J, Zheng J, Jackson R, Henderson D, et al. Prevention of impulse noise-induced hearing loss with antioxidants. Acta Otolaryngol. 2005; 125: 235–43
  • Kopke R, Weisskopf P, Boone J, Jackson R, Wester D, Hoffer M, et al. Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla. Hear Res. 2000; 149: 138–46
  • Bielefeld EC, Kopke RD, Jackson RL, Coleman JKM, Liu J, Henderson D. Noise protection with N-acetyl-l-cysteine (NAC) using a variety of noise exposures, NAC doses, and routes of administration. Acta Otolaryn. (Stockh) 2006 (in press).
  • Henderson D, Hamernik RP. Impulse noise: critical review. J Acoust Soc Am. 1986; 80: 569–84
  • Henderson D, Spongr V, Subramaniam M, Campo P. Anatomical effects of impact noise. Hear Res. 1994; 76: 101–17
  • Henderson D, Morata TC, Hamernik RP. Considerations on assessing the risk of work-related hearing loss. Noise Health. 2001; 3: 33–75
  • Hu BH, Henderson D, Nicotera TM. Extremely rapid induction of outer hair cell apoptosis in the chinchilla cochlea following exposure to impulse noise. Hear Res. 2006; 211: 16–25
  • Duan M, Qiu J, Laurell G, Olofsson A, Counter SA, Borg E. Dose and time-dependent protection of the antioxidant N-l-acetylcysteine against impulse noise trauma. Hear Res. 2004; 192: 1–9
  • Kopke R, Bielefeld E, Liu J, Zheng J, Jackson R, Henderson D. N-acetylcysteine (NAC) and acetyl-L-carnitine (ALCAR) show different effects in protecting the cochlea from noise in chinchilla. Assoc Res Otolaryngol Abs. 2004; 27: 231
  • Coleman JK, Kopke RD, Liu J, Ge X, Harper EA, Jones GE, et al. Pharmacological rescue of noise induced hearing loss using N-acetylcysteine and acetyl-l-carnitine. Hear Res. 2006, doi: 10.1016/j.heares.2006.08.008.
  • Yamasoba T, Nuttall AL, Harris C, Raphael Y, Miller JM. Role of glutathione in protection against noise-induced hearing loss. Brain Res. 1998; 784: 82–90
  • Hyde GE, Rubel EW. Mitochondrial role in hair cell survival after injury. Otolaryngol Head Neck Surg. 1995; 113: 530–40
  • Fischel-Ghodsian N, Kopke RD, Ge X. Mitochondrial dysfunction in hearing loss. Mitochondrion. 2004; 4: 675–94
  • Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proceedings of the National Academy of Sciences of the United States of America. 1994; 91: 10771–8
  • Gadaleta MN, Cormio A, Pesce V, Lezza AM, Cantatore P. Aging and mitochondria. Biochimie. 1998; 80: 863–70
  • Diao MF, Liu HY, Zhang YM, Gao WY. Changes in antioxidant capacity of the guinea pig exposed to noise and the protective effect of alpha-lipoic acid against acoustic trauma. Sheng Li Xue Bao. 2003; 55: 672–6
  • Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A. 2002; 99: 2356–61
  • Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto AM, et al. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci. 2000; 20: 43–50
  • Wang J, van de Water TR, Bonny C, de Ribaupierre F, Puel JL, Zine A. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci. 2003; 23: 8596–607
  • van de Water TR, Lallemend F, Eshraghi AA, Ahsan S, He J, Guzman J, et al. Caspases, the enemy within, and their role in oxidative stress-induced apoptosis of inner ear sensory cells. Otol Neurotol. 2004; 25: 627–32
  • Hu BH, Henderson D, Nicotera TM. Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise (1). Hear Res. 2002; 166: 62–71
  • Nicotera TM, Hu BH, Henderson D. The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol. 2003; 4: 466–77
  • Wang J, Dib M, Lenoir M, Vago P, Eybalin M, Hameg A, et al. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea pig. Neuroscience. 2002; 111: 635–48
  • Keithley EM, Ma CL, Ryan AF, Louis JC, Magal E. GDNF protects the cochlea against noise damage. Neuroreport. 1998; 9: 2183–7
  • Shoji F, Yamasoba T, Magal E, Dolan DF, Altschuler RA, Miller JM. Glial cell line-derived neurotrophic factor has a dose dependent influence on noise-induced hearing loss in the guinea pig cochlea. Hear Res. 2000; 142: 41–55
  • Walden BE, Henselman LW, Morris ER. The role of magnesium in the susceptibility of soldiers to noise-induced hearing loss. J Acoust Soc Am. 2000; 108: 453–6
  • Maurer J, Riechelmann H, Amedee RG, Mann WJ. Diltiazem for prevention of acoustical trauma during otologic surgery. ORL J Otorhinolaryngol Relat Spec. 1995; 57: 319–24
  • Probst R, Tschopp K, Ludin E, Kellerhals B, Podvinec M, Pfaltz CR. A randomized, double-blind, placebo-controlled study of dextran/pentoxifylline medication in acute acoustic trauma and sudden hearing loss. Acta Otolaryngol. 1992; 112: 435–43
  • Kramer S, Dreisbach L, Lockwood J, Baldwin K, Kopke R, Scranton S, et al. Efficacy of the antioxidant N-acetylcysteine (NAC) in protecting ears exposed to loud music. J Am Acad Audiol. 2006; 17: 265–78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.