106
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Biological bases of neuroplasticity – in vivo and in vitro studies: Interest for the auditory system

Pages 3-10 | Published online: 11 Jul 2009

References

  • Díaz Arribas MJ, Pardo-Hervás P, Tabares-Lavado M, Rios-Lago M, Maestú F. Plasticidad del sistema nervioso central y estrategias de tratamiento para la reprogramación sensorimotora: comparación de dos casos de accidente cerebrovascular isquémico en el territorio de la arteria cerebral media. Rev Neurol. 2006; 42: 153–8
  • Shimojo S, Sams L. Sensory modalities are not separate modalities: plasticity and interactions. Curr Opin Neurobiol. 2001; 11: 505–9
  • Bergado-Rosado JA, Almaguer-Melian W. Cellular mechanisms of neuroplasticity. Rev Neurol. 2000; 31: 1074–95
  • Gil-Loyzaga P. Neuroplasticidad y Sistema Auditivo. Tratado Otorrinolaringología & Cirugía Cabeza & Cuello2nd edn, C Suarez, LM Gil-Carcedo, J Marco, J Medina, P Ortega, J Trinidad. Panamericana, Madrid 2007; II: 1057–67
  • Nitsche MA, Liebetanz D, Paulus W, Tergau F. Pharmacological characterization and modulation of neuroplasticity in humans. Curr Neuropharmacol. 2005; 3: 217–29
  • Syka J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev. 2002; 82: 601–36
  • Gil-Loyzaga P. Neuroplasticity in the auditory system. Eur Rev ENT. 2005; 126: 203–8
  • Irvine DR. Auditory cortical neuroplasticity: does it provide evidence for cognitive processing in the auditory cortex?. Hear Res. 2007; 229: 158–70
  • Gil-Loyzaga P. Regeneración del epitelio del oído interno. Libro del Año Otorrinolaringología 1999, C Suarez. SANED Publ., Madrid 1999; 181–97
  • Haberny KA, Paule MG, Scallet AC, Sistare FD, Lester DS, Hanig JP, et al. Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibility to neurotoxicity. Toxicol Sci. 2002; 68: 9–17
  • Deacon TW. Prefrontal cortex and symbol learning: why a brain capable of language evolved only once. Communicating meaning: the evolution and development of language, BM Velichkovsky, DM Rumbaugh. LEA Publishers, New York 1996; 103–38
  • Gil-Loyzaga P. Fisiología del receptor auditivo. Fisiología y fisiopatología de la cóclea. Suppl. Act. ORL, P Gil-Loyzaga. SANED Publ, Madrid 2005; 1–7
  • Gil-Loyzaga P. Estructura y función de la corteza auditiva. Bases de la vía auditiva ascendente. Tratado de Audiologia, E Salesa, E Perelló, A Bonavida. Masson-Elsevier, Barcelona 2005; 23–38
  • Moller AR. Symptoms and signs caused by neural plasticity. Neurol Res. 2001; 23: 565–72
  • Bartels H, Staal MJ, Albers FWJ. Tinnitus and neural plasticity of the brain. Otol Neurotol. 2007; 28: 178–84
  • Cacace AT. Expanding the biological bases of tinnitus: cross-modal origins and the role of neuroplasticity. Hear Res. 2003; 175: 112–32
  • Jin YM, Godfrey DA. Effects of cochlear ablation on muscarinic acetylcholine receptor binding in the rat cochlear nucleus. J Neurosci Res. 2006; 83: 157–66
  • Barbacid M. Neurotrophic factors and their receptors. Current Opin Cell Biol. 1995; 7: 148–55
  • Ramón y Cajal S. Acción neurotrópica de los epitelios (Algunos detalles sobre el mecanismo genético de las ramificaciones nerviosas intra-epiteliales, sensitivas y sensoriales). Trab Lab Inv Biol. 1919; 17: 181–228
  • Levi-Montalcini R. Developmental neurobiology and the natural history of nerve growth factor. Ann Rev Neurosci. 1982; 5: 341–62
  • Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma. 2006; 23: 453–67
  • Castro Soubriet F. Moléculas quimiotrópicas como mecanismo de orientación del crecimiento axonal y de la migración neuronal durante el desarrollo del sistema nervioso de los mamíferos. Rev Neurol. 2001; 33: 54–68
  • Brors D, Aletsee C, Dazert S, Huverstuhl J, Ryan AF, Bodmer D. Clostridium difficile toxin B, an inhibitor of the small GTPases Rho, Rac and Cdc42, influences spiral ganglion neurite outgrowth. Acta Otolaryngol (Stockh) 2003; 123: 20–5
  • Korsching S. The neurotrophic factor concept: a re-examination. J Neurosci. 1993; 13: 2739–48
  • Chao MV, Hempstead BL. p75 and Trk: a two-receptor system. TINS. 1995; 18: 321–6
  • Pirvola U, Hallböök F, Xing-Qun L, Virkkala J, Saarma M, Ylikoski J, et al. Expression of neurotrophins and Trk receptors in the developing, adult, and regenerating avian cochlea. J Neurobiol. 1997; 33: 1019–33
  • Represa J, Bernd P. Nerve growth factor and serum differentially regulate development of the embryonic otic vesicle and cochleovestibular ganglion in vitro. Dev Biol. 1989; 134: 21–9
  • Lefebvre PP, Leprince P, Weber T, Rigo JM, Delree P, Moonen G. Neuronotrophic effect of developing otic vesicle on cochleo-vestibular neurons: evidence for nerve growth factor involvement. Brain Res. 1990; 507: 254–60
  • Lefebvre PP, van de Water TR, Represa J, Liu W, Bernd P, Modlin S, et al. Temporal pattern of nerve growth factor (NGF) binding in vivo and the in vitro effects of NGF on cultures of developing auditory and vestibular neurons. Acta Otolaryngol (Stockh) 1991; 111: 304–11
  • Lefebvre PP, van de Water TR, Staecker H, Weber T, Galinovic-Schwartz V, Moonen G, et al. Nerve growth factor stimulates neurite regeneration but not survival of adult auditory neurons in vitro. Acta Otolaryngol (Stockh) 1992; 112: 288–93
  • Represa J, van de Water TR, Bernd P. Temporal pattern of nerve growth factor receptor expression in developing cochlear and vestibular ganglia in quail and mouse. Anat Embryol. 1991; 184: 421–32
  • Cotanche DA, Lee KH. Regeneration of hair cells in the vestibulocochlear system of birds and mammals. Curr Opin Neurobiol. 1994; 4: 508–14
  • Staecker H, van de Water TR. Factors controlling hair cell regeneration/repair in the inner ear. Curr Opin Neurobiol. 1998; 8: 480–7
  • Cotanche DA. Hair cell regeneration in the avian cochlea. Ann Otol Rhinol Laryngol. 1997; 106: 9–15
  • Schimmang T, Represa J. Neurotrophins gain a hearing. TINS. 1997; 20: 100–2
  • Lefebvre PP, Malgrange B, Staecker H, Moonen G, van de Water TR. Retinoic acid stimulates regeneration of mammalian auditory hair cells. Science. 1993; 260: 692–5
  • Pirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumae U, Saarma M. Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc Natl Acad Sci USA. 1992; 89: 9915–9
  • Zhou X, Hossain WA, Rutledge A, Baier C, Morest DK. Basic fibroblast growth factor (FGF-2) affects development of acoustico-vestibular neurons in the chick embryo brain in vitro. Hear Res. 1996; 93: 147–66
  • Ylikoski J, Pirvola U, Virkkala J, Suvanto P, Liang XQ, Magal E, et al. Guinea pig auditory neurons are protected by glial cell-line derived growth factor from degeneration after noise trauma. Hear Res. 1998; 124: 17–26
  • Ditlevsen DK, Povlsen GK, Berezin V, Boek E. NCAM-induced intracellular signalling revisited. J Neurosci Res. 2008; 86: 727–43
  • Kolkova K, Novitskaya V, Pedersen N, Berezin V, Bock E. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J Neurosci. 2000; 20: 2238–46
  • Emerit MB, Riad M, Hamon M. Trophic effects of neurotransmitters during brain maturation. Biol Neonate. 1992; 62: 193–201
  • Puel JL, Ruel J, Guitton M, Wang J, Pujol R. The inner hair cell synaptic complex: physiology, pharmacology and new therapeutic strategies. Audiol Neurootol. 2002; 7: 49–54
  • Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science. 1999; 284: 1805–11
  • Jones TA, Kleim JA, Greenough WT. Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorymotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res. 1996; 773: 142–8
  • Pavon N, Vidal L, Blanco L, Alvarez-Fonseca P, Torres-Montoya A, Lorigados L, et al. Factores que desencadenan la muerte neuronal en enfermedades neurodegenerativas. Rev Neurol. 1998; 26: 544–60
  • Puel JL. Chemical synaptic transmission in the cochlea. Progress Neurobiol. 1995; 47: 449–76
  • Ruel J, Chen C, Pujol R, Bobbin RP, Puel JL. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea pig. J Physiol. 1999; 518: 667–80
  • Canlon B, Agerman K, Dauman R, Puel JL. Pharmacological strategies for preventing cochlear damage induced by noise trauma. Noise Health. 1998; 1: 13–23
  • Bohne BA, Harding GW. Neural regeneration in the noise-damaged chinchilla cochlea. Laryngoscope. 1992; 102: 693–703
  • Lawner BE, Harding GW, Bohne BA. Time course of nerve fibre regeneration in the noise damaged mammalian cochlea. Int J Devel Neurosci. 1997; 15: 601–17
  • D'Aldin CG, Ruel J, Assie R, Pujol R, Puel JL. Implication of NMDA type glutamate receptors in neural regeneration and neoformation of synapses after excitotoxic injury in the guinea pig cochlea. Int J Devel Neurosci. 1997; 15: 619–29
  • Lipsky RH, Jiang X, Xu K, Marko AJ, Neyer KM, Anderson TR, Marini AM. Genomics and variation of ionotropic glutamate receptors: implications for neuroplasticity. Amino Acids. 2005; 28: 169–75
  • Portera-Cailliau C, Yuste R. On the function of dendritic filopodia. Rev Neurol. 2001; 33: 1158–66
  • Toyama K, Komatsu Y, Yamamoto N, Kurotami T, Yamada K. In vitro approach to visual cortical development and plasticity. Neurosci Res. 1991; 12: 57–71
  • Bufill E, Carbonell E. Are symbolic behaviour and neuroplasticity an example of gene-culture coevolution?. Rev Neurol. 2004; 39: 48–55
  • Letourneau PC. Regulation of nerve fibre elongation during embryogenesis. Developmental Neuropsychobiology, WT Greennough, JM Juraska. Acad. Press Ibc. Harc. Brace Jovanovich Publishers, OrlandoUSA 1986; 33–71
  • Ladrech S, Lenoir M, Ruel J, Puel JL. Microtubule-associated protein 2 (MAP2) expression during synaptic plasticity in the guinea pig cochlea. Hear Res. 2003; 186: 85–90
  • Futerman AH, Banker GA. The economics of neurite outgrowth. The addition of new membrane to growing axons. Trends Neurosci. 1996; 19: 144–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.