67
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Cochlear nuclei neuroplasticity after auditory nerve and cochlea removal

, , , , &
Pages 29-39 | Published online: 11 Jul 2009

References

  • Valderrama F, Gil-Loyzaga P, Merchán-Pérez A, López-Sánchez JG. Astrocyte cytoarchitecture in cochlear nuclei of the rat: an immunocytochemical study. Otolaryngol J Relat Spec 1993; 55: 313–7
  • Valderrama F, Gil-Loyzaga P. Postnatal development of the rat cochlear nuclei. Qualitative study with the glial markers GFAP and vimentin. Eur J Anat 2004; 8: 121–32
  • Osen KK. Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 1969; 136: 453–84
  • Brawer JR, Morest DK, Kane EC. The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 1974; 155: 251–300
  • Lorente de Nó R. The primary acoustic nuclei. Raven Press, New York 1981
  • Hackney CM, Osen KK, Kolston J. Anatomy of the cochlear nuclear complex of the guinea pig. Anat Embryol (Berl) 1990; 182: 123–49
  • Young ED, Spirou GA, Rice JJ, Voight HF. Neural organization and responses to complex stimuli in the dorsal cochlear nucleus. Philos Trans R Soc Lond B Biol Sci 1992; 336: 407–13
  • Morest DK, Kim J, Bohne BA. Neuronal and transneuronal degeneration of auditory axons in the brainstem after cochlear lesions in the chinchilla: cochleotopic and non-cochleotopic patterns. Hear Res 1997; 103: 151–68
  • Harrison JM, Irving R. The anterior ventral cochlear nucleus. J Comp Neurol 1965; 124: 15–41
  • Harrison JM, Irving R. The organization of the posterior ventral cochlear nucleus in the rat. J Comp Neurol 1966; 126: 391–401
  • Webster DB, Trune DR. Cochlear nuclear complex of mice. Am J Anat 1982; 163: 103–30
  • Collinge C, Schweitzer L. Details of the central projections of the cochlear nerve in the hamster revealed by the fluorescent tracer DiI. Hear Res 1991; 53: 159–72
  • Schweitzer L. Differentiation of apical, basal and mixed dendrites of fusiform cells in the cochlear nucleus. Dev Brain Res 1990; 56: 19–27
  • Perry DR, Webster WR. Neuronal organization of the rabbit cochlear nucleus: some anatomical and electrophysiological observations. J Comp Neurol 1981; 197: 623–38
  • Morest DK, Hutson KA, Kwok S. Cytoarchitectonic atlas of the cochlear nucleus of the chinchilla, Chinchilla laniger. J Comp Neurol 1990; 300: 230–48
  • Cant NB. The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience 1981; 6: 2643–55
  • Oberdorfer MD, Parakkal MH, Altschuler RA, Wenthold RJ. Ultrastructural localization of GABA-immunoreactive terminals in the anteroventral cochlear nucleus of the guinea pig. Hear Res 1988; 33: 229–38
  • Kiang NY, Rho JM, Northrop CC, Liberman MC, Ryugo DK. Hair cell innervation by spiral ganglion cells in adult cats. Science 1982; 217: 175–7
  • Fekete DM, Rouiller EM, Liberman MC, Ryugo DK. The central projections of intracellularly labelled auditory nerve fibres in cats. J Comp Neurol 1984; 229: 432–50
  • Liberman MC, Oliver ME. Morphometry of intracellularly labelled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 1984; 223: 163–76
  • Rouiller EM, Cronin-Schreiber R, Fekete DM, Ryugo DK. The central projections of intracellularly labelled auditory nerve fibres in cats: an analysis of terminal morphology. J Comp Neurol 1986; 249: 261–78
  • Ryugo DK, Rouiller EM. Central projections of intracellularly labelled auditory nerve fibres in cats: morphometric correlations with physiological properties. J Comp Neurol 1988; 271: 130–42
  • Ostapoff EM, Morest DK. Synaptic organization of globular bushy cells in the ventral cochlear nucleus of the cat: a quantitative study. J Comp Neurol 1991; 314: 598–613
  • Conlee JW, Kane ES. Descending projections from the inferior colliculus to the dorsal cochlear nucleus in the cat: an autoradiographic study. Neuroscience 1982; 7: 161–78
  • Ryan AF, Keithley EM, Wang ZX, Schwartz IR. Collaterals from lateral and medial olivocochlear efferent neurons innervate different regions of the cochlear nucleus and adjacent brainstem. J Comp Neurol 1990; 300: 572–82
  • Behrens EG, Schofield BR, Thompson AM. Aminergic projections to cochlear nucleus via descending auditory pathways. Brain Res 2002; 955: 34–44
  • Cant NB, Gaston KC. Pathways connecting the right and left cochlear nuclei. J Comp Neurol 1982; 212: 313–26
  • Babalian AL, Ryugo DK, Vischer MW, Rouiller EM. Inhibitory synaptic interactions between cochlear nuclei: evidence from an in vitro whole-brain study. Neuroreport 1999; 10: 1913–7
  • Cant NB, Morest DK. Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light-microscopic observations. Neuroscience 1979; 4: 1909–23
  • Brawer JR, Morest DK. Relations between auditory nerve endings and cell types in the cat's anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 1975; 160: 491–506
  • Ryugo DK, Fekete DM. Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: a study of the end-bulbs of Held. J Comp Neurol 1982; 210: 239–57
  • Tolbert LP, Morest DK. The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: electron microscopy. Neuroscience 1982; 7: 3053–67
  • Tolbert LP, Morest DK. The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Golgi and Nissl methods. Neuroscience 1982; 7: 3013–30
  • Gil-Loyzaga P. Biological bases of neuroplasticity: in vivo and in vitro studies: interest for the auditory system. Audiol Med 2008 (In press).
  • Meyer RL, Sperry RW. Explanatory models for neuroplasticity in retinotectal connections. Plasticity and Recovery of Function in the Central Nervous System, G Stein, JJ Rosen, N Bullers. Academic Press, New York 1974; 45–63
  • Wiesel TN, Hubel DH. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 1963; 26: 1003–17
  • Gil-Loyzaga P. Neuroplasticity in the auditory system. Eur Revi ENT (Rev. Larynologie, Otologie and Rhinologie) 2005; 126: 203–8
  • Südhof TC, Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 1991; 6: 665–77
  • Verhhagen J, van Hooff COM, Edwards PM, de Graan PNE, Oestreicher AB, Schotman P, et al. The kinase C substrate protein B-50 and axonal regeneration. Brain Res Bull 1986; 17: 737–41
  • Gil-Loyzaga P, Pujol R. Synaptophysin in the developing cochlea. Int J Dev Neurosci 1988; 6: 155–60
  • Lasiter PS, Kachele DL. Postnatal development of protein P-38 (‘synaptophysin’) immunoreactivity in pontine and medullary gustatory zones of rat. Dev Brain Res 1989; 48: 27–33
  • Bergmann M, Schuster T, Grabs D, Marquèze-Pouey B, Betz H, Traurig H, et al. Synaptophysin and synaptoporin expression in the developing rat olfactory system. Dev Brain Res 1993; 74: 235–44
  • Ovtscharoff W, Bergmann M, Marquèze-Pouey B, Knaus P, Betz H, Grabs D, et al. Ontogeny of synaptophysin and synaptoporin in the central nervous system: differential expression in striatal neurons and their afferents during development. Dev Brain Res 1993; 72: 219–25
  • Illing RB, Horváth M. Re-emergence of GAP-43 in cochlear nucleus and superior olive following cochlear ablation in the rat. Neurosci Lett 1995; 194: 9–12
  • Illing RB, Horvatz M, Laszig R. Plasticity of the auditory brainstem: effects of cochlear ablation on GAP-43 immunoreactivity in the rat. J Comp Neurol 1997; 382: 116–38
  • Merchán-Pérez A, Bartolomé M, Ibáñez MA, Gil-Loyzaga P. Expression of GAP-43 in growing efferent fibres during cochlear development. Otolaryngol J Relat Spec 1993; 55: 208–10
  • Illing RB, Cao QL, Forster CR, Laszig R. Auditory brainstem: development and plasticity of GAP-43 mRNA expression in the rat. J Comp Neurol 1999; 412: 353–72
  • Bartolome MV, Ibanez A, Gil-Loyzaga P. Transitional expression of OX-2 and GAP-43 glycoproteins in developing cochlear nerve fibres. Histol Histopathol 2002; 17: 83–95
  • Skene JH, Jacobson RD, Snipes GJ, McGuire CB, Norden JJ, Freeman JA. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 1986; 233: 783–6
  • Benowitz LI, Perrone-Bizzosero N. The relationship of GAP-43 to the development and plasticity of synaptic connections. Ann NY Acad Sci USA 1991; 627: 58–74
  • Illing RB, Reisch A. Specific plasticity responses to unilaterally decreased or increased hearing intensity in the adult cochlear nucleus and beyond. Hear Res 2006; 216: 189–97
  • Südhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 1995; 375: 645–53
  • Jahn R, Schiebler W, Ouimet C, Greengard P. A 38,000-calton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci USA 1985; 82: 4137–41
  • Knaus P, Betz H, Rehm H. Expression of synaptophysin during postnatal development of the mouse brain. J Neurochem 1986; 47: 1302–4
  • Navone F, Jahn R, di Gioia G, Stukenbrok H, Greengard P, de Camilli P. Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 1986; 103: 2511–27
  • Wiedermann B, Franke WW, Kuhn C, Moll R, Gould VE. Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 1986; 83: 3500–4
  • Thomas L, Hartung K, Langosch D, Rehm H, Bamberg E, Franke WW, et al. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 1988; 242: 1050–3
  • Johnston PA, Jahn R, Südhof TC. Transmembrane topography and evolutionary conservation of synaptophysin. J Biol Chem 1989; 264: 1268–73
  • Masliah E, Terry RD, Alford M, de Teresa R. Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections. J Histochem Cytochem 1990; 38: 837–44
  • Tixier-Vidal A, Barret A, Faivre-Bauman A, Huttner W, Wiedenmann B. Differential expression and subcellular localization of secretogranin II and synaptophysin during early development of mouse hypothalamic neurons in culture. Neuroscience 1992; 47: 967–78
  • Leclerc N, Beesley PW, Brown I, Colonnier M, Gurd JW, Paladino T, Hawkes R. Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J Comp Neurol 1989; 280: 197–212
  • de Camilli P, Jahn R. Pathways to regulated exocytosis in neurons. Ann Rev Physiol 1990; 52: 625–45
  • Trimble WS, Scheller RH. Molecular biology of synaptic vesicle-associated proteins. Trends Neurosci 1988; 11: 241–2
  • Johnston PA, Südhof TC. The multi-subunit structure of synaptophysin. Relationship between disulphide bonding and homo-oligomerization. J Biol Chem 1990; 265: 8869–73
  • Walaas SI, Jahn R, Greengard P. Quantitation of nerve terminal populations: synaptic vesicle-associated proteins as markers for synaptic density in the rat neostriatum. Synapse 1988; 2: 516–20
  • Leube RE. Expression of the synaptophysin gene family is not restricted to neuronal and neuroendocrine differentiation in rat and human. Differentiation 1994; 56: 163–71
  • Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 1985; 41: 1017–28
  • Rehm H, Wiedenmann B, Betz H. Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 1986; 5: 535–41
  • Korematsu K, Goto S, Nagahiro S, Ushio Y. Changes of immunoreactivity for synaptophysin (‘protein p38’) following a transient cerebral ischaemia in the rat striatum. Brain Res 1993; 616: 320–4
  • Bartolomé M, Ibáñez MA, López-Sánchez JG, Merchán-Pérez A, Gil-Loyzaga P. Synaptophysin immunoreactivity in the cochlear nuclei of mammals: a comparative study. Otolaryngol J Relat Spec 1993; 55: 317–32
  • Benson CG, Gross JS, Suneja SK, Potashner SJ. Synaptophysin immunoreactivity in the cochlear nucleus after unilateral cochlear or ossicular removal. Synapse 1997; 25: 243–57
  • Gil-Loyzaga P, Bartolomé M, Ibáñez MA. Synaptophysin immunoreactivity in the cat cochlear nuclei. Histol Histopathol 1998; 13: 415–24
  • Wenthold RJ, Zempel JM, Parakkal MH, Reeks KA, Altschuler RA. Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Res 1986; 380: 7–18
  • Peyret D, Geffard M, Aran JM. GABA immunoreactivity in the primary nuclei of the auditory central nervous system. Hear Res 1986; 23: 115–21
  • Kolston J, Osen KK, Hackney CM, Ottersen OP, Storm-Mathisen J. An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Embryol (Berl) 1992; 186: 443–65
  • Roberts RC, Ribak CE. GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. J Comp Neurol 1987; 258: 267–80
  • Saint Marie RL, Morest DK, Brandon CJ. The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hear Res 1989; 42: 97–112
  • Vater M, Kössl M, Horn AK. GAD- and GABA-immunoreactivity in the ascending auditory pathway of horseshoe and mustached bats. J Comp Neurol 1992; 325: 183–206
  • Saint Marie RL, Benson CG, Ostapoff EM, Morest DK. Glycine immunoreactive projections from the dorsal to the anteroventral cochlear nucleus. Hear Res 1991; 51: 11–28
  • Kane EC. Octopus cells in the cochlear nucleus of the cat: heterotypic synapses upon homeotypic neurons. Int J Neurosci 1973; 5: 251–79
  • Ryugo DK, Sento S. Synaptic connections of the auditory nerve in cats: relationship between end-bulbs of Held and spherical bushy cells. J Comp Neurol 1991; 305: 35–48
  • Smith PH, Rhode WS. Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 1989; 282: 595–616
  • Mugnaini E, Osen KK, Dahl AL, Friedrich VLJr, Korte G. Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. J Neurocytol 1980; 9: 537–70
  • Rubel EW, Hyson RL, Durham D. Afferent regulation of neurons in the brainstem auditory system. J. Neurobiol 1990; 21: 169–96
  • Russell FA, Moore DR. Effects of unilateral cochlear removal on dendrites in the gerbil medial superior olivary nucleus. Eur J Neurosci 1999; 11: 1379–90
  • Mossop J, Wilson M, Caspary D, Moore D. Down-regulation of inhibition following unilateral deafening. Hear Res 2000; 147: 183–7
  • Kraus KS, Illing RB. Cell death or survival: molecular and connectional conditions for olivocochlear neurons after axotomy. Neuroscience 2005; 134: 467–81
  • Moore DR. Auditory brainstem responses in ferrets following unilateral cochlear removal. Hear Res 1993; 68: 28–34
  • Holt AG, Asako M, Lomax CA, MacDonald J, Tong L, Lomax MI, Altschuler RA. Deafness-related plasticity in the inferior colliculus: gene expression profiling following removal of peripheral activity. J Neurochem 2005; 93: 1069–86
  • Alvarado JC, Fuentes-Santamaría V, Franklin SR, Brunso-Bechtold JK, Henkel CK. Synaptophysin and insulin-like growth factor-1 immunostaining in the central nucleus of the inferior colliculus in adult ferrets following unilateral cochlear removal: a densitometric analysis. Synapse 2007; 61: 288–302
  • Rajan R, Irvine DR. Absence of plasticity of the frequency map in the dorsal cochlear nucleus of adult cats after unilateral partial cochlear lesions. J Comp Neurol 1998; 399: 35–46
  • Fuentes-Santamaría V, Alvarado JC, Henkel CK, Brunso-Bechtold JK. Cochlear ablation in adult ferrets results in changes in insulin-like growth factor-1 and synaptophysin immunostaining in the cochlear nucleus. Neuroscience 2007; 148: 1033–47
  • Mostafapour SP, Cochran SL, del Puerto NM, Rubel EW. Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 2000; 426: 561–71
  • Shore SE, Godfrey DA, Helfert RH, Altschuler RA, Bledsoe SC, Jr. Connections between the cochlear nuclei in guinea pig. Hear Res 1992; 62: 16–26
  • Shore SE, Helfert RH, Bledsoe SC, Jr, Altschuler RA, Godfrey DA. Descending projections to the dorsal and ventral divisions of the cochlear nucleus in guinea pig. Hear Res 1991; 52: 255–68
  • Hsieh CY, Cramer KS. Deafferentation induces novel axonal projections in the auditory brainstem after hearing onset. J Comp Neurol 2006; 497: 589–99
  • D'Sa C, Gross J, Francone VP, Morest DK. Plasticity of synaptic endings in the cochlear nucleus following noise-induced hearing loss is facilitated in the adult FGF2 overexpressor mouse. Europ J Neurosci 2007; 26: 666–80
  • Francis HW, Manis PB. Effects of deafferentation on the electrophysiology of ventral cochlear nucleus neurons. Hear Res 2000; 149: 91–105
  • Shore SE, Koehler S, Oldakowski M, Hughes LF, Syed S. Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur J Neurosci 2008; 27: 155–68
  • Pavon N, Vidal L, Blanco L, Alvarez-Fonseca P, Torres-Montoya A, Lorigados L, et al. Factores que desencadenan la muerte neuronal en enfermedades neurodegenerativas. Rev Neurol 1998; 26: 544–60
  • Durham D, Park DL, Girod DA. Central nervous system plasticity during hair cell loss and regeneration. Hearing Res 2000; 147: 145–59
  • d'Aldin CG, Ruel J, Assié R, Pujol R, Puel JL. Implication of NMDA type glutamate receptors in neural regeneration and neoformation of synapses after excitotoxic injury in the guinea pig cochlea. Int J Dev Neurosci 1997; 15: 619–29
  • Lefebvre PP, Leprince P, Weber T, Rigo JM, Delree P, Moonen G. Neuronotrophic effect of developing otic vesicle on cochleo-vestibular neurons: evidence for nerve growth factor involvement. Brain Res 1990; 507: 254–60
  • Lefebvre PP, van de Water TR, Represa J, Liu W, Bernd P, Modlin S, et al. Temporal pattern of nerve growth factor (NGF) binding in vivo and the in vitro effects of NGF on cultures of developing auditory and vestibular neurons. Acta Otolaryngol 1991; 111: 304–11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.