41
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Neurotransmitters and neuroplasticity during cochlear development: in vivo and in vitro studies

Pages 11-21 | Published online: 11 Jul 2009

References

  • Warr WB. Organization of olivocochlear efferent systems in mammals. Mammalian auditory pathway: neuroanatomy, DB Webster, AN Popper, RR Fay. Springer, New York 1992; 410–48
  • Eybalin M. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 1993; 73: 309–73
  • Slepecky NB, Galsky MD, Swartzentruber-Martin H, Savage J. Study of afferent nerve terminals and fibres in the gerbil cochlea: distribution by size. Hear Res 2000; 144: 124–34
  • Raphael Y, Altschuler RA. Structure and innervation of the cochlea. Brain Res Bull 2003; 60: 397–422
  • Shibamori Y, Tamamaki N, Saito H, Nojyo Y. The trajectory of the sympathetic nerve fibres to the rat cochlea as revealed by anterograde and retrograde WGA-HRP tracing. Brain Res 1994; 646: 223–9
  • Gil-Loyzaga P, Vicente-Torres MA, Arce A, Cardinali DP, Esquifino A. Effect of superior cervical ganglionectomy on catecholamine concentration in rat cochlea. Brain Res 1998; 779: 53–7
  • Gil-Loyzaga P. Neurotransmitters of the olivocochlear lateral efferent system: with an emphasis on dopamine. Acta Otolaryngol (Stockholm) 1995; 115: 222–6
  • Laurikainen EA, Kim D, Didier A, Ren T, Miller JM, Quirk WS, Nuttall AL. Stellate ganglion drives sympathetic regulation of cochlear blood flow. Hear Res 1993; 64: 199–204
  • Pujol R, Lenoir M. The four types of synapses in the organ of Corti. Neurobiology of Hearing: The Cochlea, RA Altschuler, RP Bobbin, DW Hoffman. Raven Press, New York 1986; 161–72
  • Echteler SM. Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci USA 1992; 89: 6324–7
  • Puel JL. Chemical synaptic transmission in the cochlea. Prog Neurobiol 1995; 47: 449–76
  • Ruel J, Chen C, Pujol R, Bobbin RP, Puel JL. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea pig. J Physiol 1999; 518: 667–80
  • Halmos G, Lendvai B, Gáborján A, Baranyi M, Szabó LZ, Csokonai Vitéz L. Simultaneous measurement of glutamate and dopamine release from isolated guinea pig cochlea. Neurochem Int 2002; 40: 243–8
  • Gil-Loyzaga P, Bartolomé V, Vicente-Torres A, Carricondo F. Serotonergic innervation of the organ of Corti. Acta Otolaryngol 2000; 120: 128–32
  • Labrousse M, Levêque M, Ouedraogo T, Avisse C, Chays A, Delattre JF. An anatomical study of the vestibulocochlear anastomosis (anastomosis of Oort) in humans: preliminary results. Surg Radiol Anat 2005; 27: 238–42
  • Merchán-Pérez A, Gil-Loyzaga P, López-Sánchez J, Eybalin M, Valderrama FJ. Ontogeny of gamma-aminobutyric acid in efferent fibres to the rat cochlea. Brain Res Dev Brain Res 1993; 76: 33–41
  • Gil-Loyzaga P, Bartolomé MV, Vicente-Torres MA. Serotonergic innervation of the organ of Corti of the cat cochlea. Neuroreport 1997; 8: 3519–22
  • Bartolomé MV, Gil-Loyzaga P. Serotonergic innervation of the inner ear: is it involved in the general physiological control of the auditory receptor?. Int Tinnitus J 2005; 11: 119–25
  • Pujol R, Sans A. Synaptogenesis in the mammalian inner ear. Advances in Neural and Behavioural Development, RN Aslin. Ablex Publ Corp, Norwood, New Jersey 1986; 1–18
  • Pujol R, Uziel A. Auditory development: peripheral aspects. Handbook of Human Growth and Developmental Biology. Vol I. Part B: Sensory, Motor and Integrative Development, E Meisami, PS Timiras. CRC Press Inc, Boca Raton, Florida 1988; 109–30
  • Rubel EW, Fritzsch B. Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 2002; 25: 51–101
  • Mbiene JP, Dechesne CJ, Schachner M, Sans A. Immunocytological characterization of the expression of cell adhesion molecule L1 during early innervation of mouse otocysts. Cell Tissue Res 1989; 255: 81–8
  • Bartolomé MV, Ibáñez-Olías MA, Gil-Loyzaga P. Transitional expression of OX-2 and GAP-43 glycoproteins in developing rat cochlear nerve fibres. Histol Histopathol 2002; 17: 83–95
  • Simonneau L, Gallego M, Pujol R. Comparative expression patterns of T-, N-, E-cadherins, beta-catenin, and polysialic acid neural cell adhesion molecule in rat cochlea during development: implications for the nature of Kölliker's organ. J Comp Neurol 2003; 459: 113–26
  • Gil-Loyzaga P, Remezal M, Oriol R. Neuronal influence on B and H human blood group antigen expression in rat cochlear cultures. Cell Tissue Res 1992; 269: 13–20
  • Ramón y Cajal S. Acción neurotrópica de los epitelios (algunos detalles sobre el mecanismo genético de las ramificaciones nerviosas intra-epiteliales, sensitivas y sensoriales). Trab Lab Invest Biol U Madrid 1919; 17: 181–228
  • Tello JF. Le réticule des cellules ciliées du labyrinthe chez la souris et son indépendance des terminaisons nerveuses de la VIII paire. Trav Lab Recher Biol 1931; 27: 151–86
  • Sher AE. The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol Suppl 1971; 285: 1–77
  • Pujol R, Lavigne-Rebillard M, Lenoir M. Development of sensory and neural structures in the mammalian cochlea. Development of the Auditory System, Springer Handbook of Auditory Research, EW Rubel, AN Popper, RR Fay. Springer, New York 1997; XII: 146–92
  • Yokoh Y. Early formation of nerve fibres in the human otocyst. Acta Anat 1971; 80: 99–106
  • Pujol R, Lavigne-Rebillard M. Early stages of innervation and sensory cell differentiation in the human foetal organ of Corti. Acta Otolaryngol Suppl 1985; 423: 43–50
  • Lavigne-Rebillard M, Pujol R. Auditory hair cells in human foetuses: synaptogenesis and ciliogenesis. J Electron Microsc Tech 1990; 15: 115–22
  • de Castro F. Moléculas quimitrópicas como mecanismo de orientación del crecimiento axonal y de la migración neuronal durante el desarrollo del sistema nervioso de los mamíferos. Rev Neurol 2001; 33: 54–68
  • Gil-Loyzaga P, Pujol R. Neurotoxicity of kainic acid in the rat cochlea during early developmental stages. Eur Arch Otorhinolaryngol 1990; 248: 40–8
  • Gil-Loyzaga P. Biological bases of neuroplasticity: in vivo and in vitro studies. Interest for the auditory system. Audiol Med. 2008; (this issue, in press).
  • Steinbach S, Lutz J. Glutamate induces apoptosis in cultured spiral ganglion explants. Biochem Biophys Res Commun 2007; 357: 14–9
  • Luo L, Brumm D, Ryan AF. Distribution of non-NMDA glutamate receptor mRNAs in the developing rat cochlea. J Comp Neurol 1995; 361: 372–82
  • Jiménez C Núñez L. Glutamate receptors in the developing cochlear ganglion. Int J Dev Biol. 1996; Suppl:S159–60.
  • Farbman AI. Electron microscope study of the rat fungiform papilla. Dev Biol. 1965; 11: 110–35
  • Jacobson M. Cellular interactions and interdependence during development of the nervous system. In: Developmental Neurobiology ( 2nd). New York and London: Plenum Press; 1978. p. 253–307.
  • Oakley B. Trophic competence in mammalian gustation. Taste, olfaction, and the central nervous system. A Festschrift Honoring Carl Pfaffmann, D Pfaff. Rockefeller University Press, New York 1985; 92–103
  • Denizot JP, Libouban S. New formation of sensory cells in the tuberous organ (electroreceptor) of Brienomyrus niger (Mormyridae) induced by transection of afferent nerve. Int J Dev Neurosci 1985; 3: 323–30
  • Schiaffino S, Pierobon S. Morphogenesis of rat muscle spindles after nerve lesion during early postnatal development. J Neurocytol 1976; 5: 319–36
  • Delaveuve B. Mise en evidence d'alterations dans les cellules sensorielles des neuromasters du Xénope aprés section du nerf lateral. Etude ultrastructurale. C Acad Sci (III) 1974; 278: 1063–6
  • Hosley MA, Hughes SE, Oakley B. Neural induction of taste buds. J Comp Neurol 1987; 260: 224–32
  • Bergado-Rosado JA, Almaguer-Melian W. Cellular mechanisms of neuroplasticity. Rev Neurol 2000; 31: 1074–95
  • Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 1999; 284: 1805–11
  • Lipsky RH, Jiang X, Xu K, Marko AJ, Neyer KM, Anderson TR, et al. Genomics and variation of ionotropic glutamate receptors: implications for neuroplasticity. Amino Acids 2005; 28: 169–75
  • Haberny KA, Paule MG, Scallet AC, Sistare FD, Lester DS, Hanig JP, et al. Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibility to neurotoxicity. Toxicol Sci 2002; 68: 9–17
  • Emerit MB, Riad M, Hamon M. Trophic effects of neurotransmitters during brain maturation. Biol Neonate 1992; 62: 193–201
  • d'Aldin CG, Ruel J, Assié R, Pujol R, Puel JL. Implication of NMDA type glutamate receptors in neural regeneration and neoformation of synapses after excitotoxic injury in the guinea pig cochlea. Int J Dev Neurosci 1997; 15: 619–29
  • Ingham NJ, Thornton SK, McCrossan D, Withington DJ. Neurotransmitter involvement in development and maintenance of the auditory space map in the guinea pig superior colliculus. J Neurophysiol 1998; 80: 2941–53
  • Lavigne-Rebillard M, Dechesne C, Pujol R, Sans A, Escudero P. Développement de l'oreille interne pendant le premier trimestre de la grossesse. Différenciation del cellules sensorielles et formation des premières synapses. Ann Oto-Laryng (Paris) 1985; 102: 493–8
  • Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM. Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 1985; 18: 145–51
  • Knipper M, Köpschall I, Rohbock K, Köpke AK, Bonk I, Zimmermann U, et al. Transient expression of NMDA receptors during rearrangement of AMPA-receptor-expressing fibres in the developing inner ear. Cell Tissue Res 1997; 287: 23–41
  • Sobkowicz HM, Rose JE, Scott GE, Slapnick SM. Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. J Neurosci 1982; 2: 942–57
  • Sobkowicz HM, Rose JE, Scott GL, Levenick CV. Distribution of synaptic ribbons in the developing organ of Corti. J Neurocytol 1986; 15: 693–714
  • Mbienne JP, Favre D, Sans A. Early innervation and differentiation of hair cells in the vestibular epithelia of mouse embryos: SEM and TEM study. Anat Embryol 1988; 177: 331–40
  • Knipper M, Zimmermann U, Rohbock K, Kopschall I, Zenner HP. Synaptophysin and GAP-43 proteins in efferent fibres of the inner ear during postnatal development. Dev Brain Res 1995; 89: 73–86
  • Pujol R. Synaptic plasticity in the developing cochlea. The Biology of Change in Otolaryngology, RJ Ruben, TR van de Water, EW Rubel. Elsevier, Amsterdam 1986; 47–54
  • Puel JL, Bobbin RP, Fallon M. An ipsilateral cochlear efferent loop protects the cochlea during intense sound exposure. Hear Res 1988; 37: 65–9
  • Pujol R, Puel JL, Gervais d'Aldin C, Eybalin M. Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol 1993; 113: 330–4
  • Rebillard G, Ruel J, Nouvian R, Saleh H, Pujol R, Dehnes Y, et al. Glutamate transporters in the guinea pig cochlea: partial mRNA sequences, cellular expression and functional implications. Eur J Neurosci 2003; 17: 83–92
  • Jin ZH, Kikuchi T, Tanaka K, Kobayashi T. Expression of glutamate transporter GLAST in the developing mouse cochlea. Tohoku J Exp Med 2003; 200: 137–44
  • Wood A, Ashhurst DE, Corbett A, Thorogood P. The transient expression of type II collagen at tissue interfaces during mammalian craniofacial development. Development 1991; 111: 955–68
  • Rasmussen GL. Efferent fibres of the cochlear nerve and cochlear nucleus. Neural Mechanisms of the Auditory and Vestibular Systems, GL Rasmussen, WF Windle. Charles C. Thomas, Springfield 1960; 105–15
  • Bretos M. Primordial morphogenesis of the stato-acoustic ganglion of the inner ear in the mouse embryo. I. Analysis of the early morphogenesis of 9-, 9.5- and 10-day-old embryos. Arch Biol (Liege) 1979; 90: 195–224
  • Noden DM, van de Water TR. The developing ear: tissue origins and interactions. The Biology of Change in Otolaryngology, RJ Ruben, TR van de Water, EW Rubel. Elsevier, Amsterdam 1986; 15–46
  • Lenoir M, Shnerson A, Pujol R. Cochlear receptor development in the rat with emphasis on synaptogenesis. Anat Embryol 1980; 160: 253–62
  • Lenoir M, Puel JL, Pujol R. Sterocilia and tectorial membrane development in the rat cochlea: a SEM study. Anat Embriol 1987; 175: 477–87
  • Uziel A, Romand R, Marot M. Development of cochlear potentials in rats. Audiology 1981; 20: 89–100
  • Pujol R, Carlier E, Lenoir M. Ontogenetic approach to inner and outer hair cells function. Hear Res 1980; 2: 423–30
  • Puel JL, Uziel A. Correlative development of cochlear action potential sensitivity, latency and frequency selectivity. Dev Brain Res 1987; 37: 179–88
  • Robertson D, Harvey AR, Cole KS. Postnatal development of the efferent innervation of the rat cochlea. Brain Res Dev Brain Res 1989; 47: 197–207
  • Gil-Loyzaga P, Parés-Herbute N. HPLC detection of dopamine and noradrenaline in the cochlea of adult and developing rats. Brain Res Dev Brain Res 1989; 48: 157–60
  • Merchán Pérez A, Gil-Loyzaga P, Eybalin M, Fernández Mateos P, Bartolomé MV. Choline-acetyltransferase-like immunoreactivity in the organ of Corti of the rat during postnatal development. Brain Res Dev Brain Res 1994; 82: 29–34
  • Merchan-Perez A, Gil-Loyzaga P, Eybalin M. Immunocytochemical detection of calcitonin gene-related peptide in the postnatal developing rat cochlea. Int J Dev Neurosci 1990; 8: 603–12
  • Merchan-Perez A, Gil-Loyzaga P, Eybalin M. Ontogeny of glutamate decarboxylase and gamma-aminobutyric acid immunoreactivities in the rat cochlea. Eur Arch Otorhinolaryngol 1990; 248: 4–7
  • Merchan-Perez A, Gil-Loyzaga P, Eybalin M. Immunocytochemical detection of glutamate decarboxylase in the postnatal developing rat organ of Corti. Int J Dev Neurosci 1990; 8: 613–20
  • Gil-Loyzaga P, Pujol R. Synaptophysin in the developing cochlea. Int J Dev Neurosci 1988; 6: 155–60
  • Kirk DL, Johnstone BM. Modulation of f2-f1: evidence for a GABA-ergic efferent system in apical cochlea of the guinea pig. Hear Res 1993; 67: 20–34
  • Gil-Loyzaga P. Neuroplasticidad y Sistema Auditivo. Tratado Otorrinolaringología & Cirugía Cabeza & Cuello2nd edn, C Suarez, LM Gil-Carcedo, J Marco, J Medina, P Ortega, J Trinidad. Panamericana, Madrid 2007; II: 1057–67
  • Gil-Loyzaga P, Regeneración del epitelio del oido interno. In: Suarez C. Libro del Año Otorrinolaringología 1999. Madrid: SANED Publ.; 1999. p. 181–97.
  • Lefebvre PP, Malgrange B, Staecker H, Moonen G, van de Water TR. Retinoic acid stimulates regeneration of mammalian auditory hair cells. Science 1993; 260: 692–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.