2,055
Views
11
CrossRef citations to date
0
Altmetric
Original article

Identifying geographical heterogeneity of pulmonary tuberculosis in southern Ethiopia: a method to identify clustering for targeted interventions

, & ORCID Icon
Article: 1785737 | Received 20 Feb 2020, Accepted 08 Jun 2020, Published online: 04 Aug 2020

References

  • WHO. Global tuberculosis report 2014. Geneva: World Health Organization; 2014.
  • Beyers N, Gie RP, Zietsman HL, et al. The use of a geographical information system (GIS) to evaluate the distribution of tuberculosis in a high-incidence community. South Afr Med J. 1996;86:40–13.
  • Munch Z, Van Lill SW, Booysen CN, et al. Tuberculosis transmission patterns in a high-incidence area: a spatial analysis. Int J Tuberc Lung Dis. 2003;7:271–277.
  • Tiwari N, Adhikari CM, Tewari A, et al. Investigation of geo-spatial hotspots for the occurrence of tuberculosis in Almora district, India, using GIS and spatial scan statistic. Int J Health Geogr. 2006;5:33.
  • Onozuka D, Hagihara A. Geographic prediction of tuberculosis clusters in Fukuoka, Japan, using the space-time scan statistic. BMC Infect Dis. 2007;7:26.
  • Gomez-Barroso D, Rodriguez-Valin E, Ramis R, et al. Spatio-temporal analysis of tuberculosis in Spain, 2008–2010. Int J Tuberc Lung Dis. 2013;17:745–751.
  • Liu Y, Li X, Wang W, et al. Investigation of space-time clusters and geospatial hot spots for the occurrence of tuberculosis in Beijing. Int J Tuberc Lung Dis. 2012;16:486–491.
  • Touray K, Adetifa IM, Jallow A, et al. Spatial analysis of tuberculosis in an urban west African setting: is there evidence of clustering? Trop Med Int Health. 2010;15:664–672.
  • Nana Yakam A, Noeske J, Dambach P, et al. Spatial analysis of tuberculosis in Douala, Cameroon: clustering and links with socio-economic status. Int J Tuberc Lung Dis. 2014;18:292–297.
  • Roza DL, Caccia-Bava Mdo C, Martinez EZ. Spatio-temporal patterns of tuberculosis incidence in Ribeirao Preto, State of Sao Paulo, southeast Brazil, and their relationship with social vulnerability: a Bayesian analysis. Rev Soc Bras Med Trop. 2012;45:607–615.
  • Maciel EL, Pan W, Dietze R, et al. Spatial patterns of pulmonary tuberculosis incidence and their relationship to socio-economic status in Vitoria, Brazil. Int J Tuberc Lung Dis. 2010;14:1395–1402.
  • Jackson S, Sleigh AC, Wang GJ, et al. Poverty and the economic effects of TB in rural China. Int J Tuberc Lung Dis. 2006;10:1104–1110.
  • Couceiro L, Santana P, Nunes C. Pulmonary tuberculosis and risk factors in Portugal: a spatial analysis. Int J Tuberc Lung Dis. 2011;15:1445–1454.
  • Datiko DG, Yassin MA, Chekol LT, et al. The rate of TB-HIV co-infection depends on the prevalence of HIV infection in a community. BMC Public Health. 2008;8:266.
  • Houston S, Ray S, Mahari M, et al. The association of tuberculosis and HIV infection in Harare, Zimbabwe. Int Union Tuberc Lung Dis. 1994;75:220–226.
  • Thanh DH, Sy DN, Linh ND, et al. HIV infection among tuberculosis patients in Vietnam: prevalence and impact on tuberculosis notification rates. Int J Tuberc Lung Dis. 2010;14:986–993.
  • Glynn JR, Warndorff DK, Malema SS, et al. Tuberculosis: associations with HIV and socioeconomic status in rural Malawi. Trans R Soc Trop Med Hyg. 2000;94:500–503.
  • Li XX, Wang LX, Zhang H, et al. Spatial variations of pulmonary tuberculosis prevalence co-impacted by socio-economic and geographic factors in People’s Republic of China, 2010. BMC Public Health. 2014;14:257.
  • Tanrikulu AC, Acemoglu H, Palanci Y, et al. Tuberculosis in Turkey: high altitude and other socio-economic risk factors. Public Health. 2008;122:613–619.
  • Olender S, Saito M, Apgar J, et al. Low prevalence and increased household clustering of Mycobacterium tuberculosis infection in high altitude villages in Peru. Am J Trop Med Hyg. 2003;68:721–727.
  • Vargas MH, Furuya ME, Perez-Guzman C. Effect of altitude on the frequency of pulmonary tuberculosis. Int J Tuberc Lung Dis. 2004;8:1321–1324.
  • FMOH. HMIS indicator definitions: technical standards. Addis Ababa: Federal Ministry of Health; 2014. p. 1–156.
  • Dangisso MH, Datiko DG, Lindtjorn B. Trends of tuberculosis case notification and treatment outcomes in the sidama zone, southern ethiopia: ten-year retrospective trend analysis in urban-rural settings. PLoS One. 2014;9:e114225.
  • WHO. Global tuberculosis report 2015. Geneva: World Health Organization; 2015.
  • Dangisso MH, Datiko DG, Lindtjorn B. Accessibility to tuberculosis control services and tuberculosis programme performance in southern Ethiopia. Glob Health Action. 2015;8:29443.
  • Tadesse T, Demissie M, Berhane Y, et al. The clustering of smear-positive tuberculosis in Dabat, Ethiopia: a population based cross sectional study. PLoS One. 2013;8:e65022.
  • Dangisso MH, Datiko DG, Lindtjorn B. Spatio-temporal analysis of smear-positive tuberculosis in the sidama zone, southern ethiopia. PLoS One. 2015;10:e0126369.
  • Feske ML, Teeter LD, Musser JM, et al. Including the third dimension: a spatial analysis of TB cases in Houston Harris County. Tuberculosis (Edinb). 2011;91:S24–33.
  • Gelaw YA, Williams G, Assefa Y, et al. Sociodemographic profiling of tuberculosis hotspots in Ethiopia, 2014–2017. Trans R Soc Trop Med Hyg. 2019;113:379–391.
  • Alene KA, Clements ACA. Spatial clustering of notified tuberculosis in Ethiopia: A nationwide study. PLoS One. 2019;14:e0221027.
  • Elliott P, Wartenberg D. Spatial epidemiology: current approaches and future challenges. Environ Health Perspect. 2004;112:998–1006.
  • Lin CH, Wen TH. Using geographically weighted regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue. Int J Environ Res Public Health. 2011;8:2798–2815.
  • Ndiath MM, Cisse B, Ndiaye JL, et al. Application of geographically-weighted regression analysis to assess risk factors for malaria hotspots in Keur Soce health and demographic surveillance site. Malar J. 2015;14:463.
  • Weisent J, Rohrbach B, Dunn JR, et al. Socioeconomic determinants of geographic disparities in campylobacteriosis risk: a comparison of global and local modeling approaches. Int J Health Geogr. 2012;11:45.
  • Ethiopia CSAo. Population. Addis Ababa: Central statistical Agency; 2012–2015. Available from: http://www.csa.gov.et/index.php/2013-02-20-13-43-35/national-statistics-abstract/141-population
  • Getis A, Ord JK. The analysis of spatial association by use of distance statistics. Geog Anal. 1992;24:189–206.
  • Kulldorff M. SaTScanTM user guide for version 9.2. 2010.
  • Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. Stat Med. 1995;14:799–810.
  • USEROS. ASTER global digital elevation model version 2. Sioux Falls, South Dakota: Geological survey and Earth Observatory Centre; 2011.
  • Matthews SA, Yang TC. Mapping the results of local statistics: using geographically weighted regression. Demographic Res. 2012;26:151–166.
  • Wei W, Yuan-Yuan J, Ci Y, et al. Local spatial variations analysis of smear-positive tuberculosis in Xinjiang using Geographically Weighted Regression model. BMC Public Health. 2016;16:1058.
  • Yassin MA, Datiko DG, Tulloch O, et al. Innovative community-based approaches doubled tuberculosis case notification and improve treatment outcome in Southern Ethiopia. PLoS One. 2013;8:e63174.
  • Jacobson LM, de Lourdes Garcia-garcia M, Hernandez-Avila JE, et al. Changes in the geographical distribution of tuberculosis patients in Veracruz, Mexico, after reinforcement of a tuberculosis control programme. Trop Med Int Health. 2005;10:305–311.
  • Hsu AH, Lin CB, Lee YS, et al. Molecular epidemiology of multidrug-resistant Mycobacterium tuberculosis in Eastern Taiwan. Int J Tuberc Lung Dis. 2010;14:924–926.
  • Tessema B, Beer J, Merker M, et al. Molecular epidemiology and transmission dynamics of Mycobacterium tuberculosis in Northwest Ethiopia: new phylogenetic lineages found in Northwest Ethiopia. BMC Infect Dis. 2013;13:131.