4,569
Views
57
CrossRef citations to date
0
Altmetric
Original articles

Investigation on the electrochemical performance of hausmannite Mn3O4 nanoparticles by ultrasonic irradiation assisted co-precipitation method for supercapacitor electrodes

ORCID Icon, , &
Pages 669-677 | Received 15 Nov 2016, Accepted 05 Jul 2017, Published online: 20 Jul 2018

References

  • Bernrad MC, Goff HL, Thi BB. Electrochromic reactions in manganese oxides. J Electrochem Soc. 1993;140:3065. doi: 10.1149/1.2220986
  • De Vries AH, Hozoi L, Broer R. Importance of interatomic hole screening in core-level spectroscopy of transition metal oxides: Mn 3s hole states in MnO. Phys Rev B. 2002;66:1397. doi: 10.1103/PhysRevB.66.035108
  • Stobbe ER, de Boer BA, Geus JW. The reduction and oxidation behaviour of manganese oxides. Catal Today. 1999;47:161–167. doi: 10.1016/S0920-5861(98)00296-X
  • Grootendorst EJ, Verbeek Y, Ponce V. The role of the Mars and Van Krevelen mechanism in the selective oxidation of nitrosobenzene and the deoxygenation of nitrobenzene on oxidic catalysts. J Catal. 1995;157:706–712. doi: 10.1006/jcat.1995.1336
  • Regmi R, Tackett R, Lawes G, et al. Suppression of low-temperature magnetic states in Mn3O4 nanoparticles. Magn Mater. 2009;321:2296–2299. doi: 10.1016/j.jmmm.2009.01.041
  • Chen ZW, Lai JKL, Shek CH. Shape-controlled synthesis and nanostructure evolution of single-crystal Mn3O4 nanocrystals. Scr Mater. 2006;55:735–738. doi: 10.1016/j.scriptamat.2006.05.041
  • Seo WS, Jo HH, Lee K, et al. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew Chem. 2004;116:1135–1137. doi: 10.1002/ange.200352400
  • Li X, Zhou L, Gao J, et al. Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation. Powder Technol. 2009;190:324–326. doi: 10.1016/j.powtec.2008.08.010
  • Abdelazez Mohamed AK, Qiumei Z, Kangbing W, et al. Mn3O4 nanoplates and nanoparticles: synthesis, characterization, electrochemical and catalytic properties. J. Solid State Chem. 2010;183:744–751. doi: 10.1016/j.jssc.2010.01.015
  • Kumar VG, Aurbuch D, Gedanken A. A comparison between hot-hydrolysis and sonolysis of various Mn(II) salts. Ultrason Sonochem. 2003;10:17–23. doi: 10.1016/S1350-4177(02)00091-3
  • Li F, Wu J, Qin Q, et al. Facile synthesis of γ-MnOOH micro/nanorods and their conversion to β-MnO2, Mn3O4. J. Alloys Compd. 2010;492:339–346. doi: 10.1016/j.jallcom.2009.11.089
  • Sicard L, LeMeins JM, Methivier C, et al. Polyol synthesis and magnetic study of Mn3O4 nanocrystals of tunable size. Magn Mater. 2010;322:2634–2640. doi: 10.1016/j.jmmm.2010.03.016
  • Rohani Bastami T, Entezari MH. Sono-synthesis of Mn3O4 nanoparticles in different media without additives. Chem Eng J. 2010;164:261–266. doi: 10.1016/j.cej.2010.08.030
  • Gopalakrishnan IK, Bagkar N, Ganguly R, et al. Synthesis of superparamagnetic Mn3O4 nanocrystallites by ultrasonic irradiation. J Cryst Growth. 2005;280:436–441. doi: 10.1016/j.jcrysgro.2005.03.060
  • Li B, Zhao Y, Xu X, et al. A simple method for the preparation of containing Sb nano- and microcrystallines via an ultrasound agitation. Ultrason Sonochem. 2007;14:557–562. doi: 10.1016/j.ultsonch.2006.09.007
  • Yang Z, Zhang Y, Zhang W, et al. Nanorods of manganese oxides: synthesis, characterization and catalytic application. J Solid State Chem. 2006;179:679–684. doi: 10.1016/j.jssc.2005.11.028
  • Pradhan A, Jones RC, Caruntu D, et al. Gold–magnetite nanocomposite materials formed via sonochemical methods. Ultrason Sonochem. 2008;15:891–897. doi: 10.1016/j.ultsonch.2008.01.004
  • Kesavan V, Sivanand PS, Chandrasekaran S, et al. Catalytic aerobic oxidation of cycloalkanes with nanostructured amorphous metals and alloys. Angew Chem Int Ed. 1999;38:3521–3523. doi: 10.1002/(SICI)1521-3773(19991203)38:23<3521::AID-ANIE3521>3.0.CO;2-S
  • Cheng X, Zhang X, Yin H, et al. Modifier effects on chemical reduction synthesis of nanostructured copper. Appl Surf Sci. 2006;253:2727–2732. doi: 10.1016/j.apsusc.2006.05.125
  • Salavati-Niasari M, Davar F, Mazaheri M. Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato)manganese(II)] complex. Polyhedron. 2008;27:3467–3471. doi: 10.1016/j.poly.2008.04.015
  • Gao J, Lowe MA, Abruna HD. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem Mater. 2011;23:3223–3227. doi: 10.1021/cm201039w
  • Baykala A, Kavasb H, Durmuşa Z, et al. Cent Eur J Chem. 2010;8:633.
  • Askarinejad A, Morsali A. Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason Sonochem. 2009;16:124–131. doi: 10.1016/j.ultsonch.2008.05.015
  • Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6
  • Tu KN. Interdiffusion and reaction in bimetallic Cu-Sn thin films. Acta Met. 1973;21:347–354. doi: 10.1016/0001-6160(73)90190-9
  • Williamson GB, Smallman RC. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos Mag. 1956;1:34–46. doi: 10.1080/14786435608238074
  • Guneri E, Gode F, Ulutas C, et al. Chalcogenide Lett. 2010;7:685.
  • Gandhi S, Gopinathan nair MR, Anbarasan R. Sonochemical synthesis and characterization of nanostructured Mn 3 O4 and its surface catalytic effect on poly (vinyl alcohol). Int J Nanosci. 2012;11:1250004. doi: 10.1142/S0219581X12500044
  • Bin Asif SA, Khan SB, Asiri AM. Visible light functioning photocatalyst based on Al2O3 doped Mn3O4 nanomaterial for the degradation of organic toxin. Nanoscale Res Lett. 2015;10:482. doi: 10.1186/s11671-015-1174-y
  • Mansournia M, Azizi F, Rakhshan N. A novel ammonia-assisted method for the direct synthesis of Mn3O4 nanoparticles at room temperature and their catalytic activity during the rapid degradation of azo dyes. J Phys Chem Solids. 2015;80:91–97. doi: 10.1016/j.jpcs.2015.01.001
  • Atique Ullah AKM, Fazle Kibria AKM, Akter M, et al. Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment. J Saudi Chem Soc. 2017. doi: 10.1016/j.jscs.2017.03.008.
  • Moses Ezhil Raj A, Grace Victoria S, Bena Jothy V, et al. XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique. Appl Surf Sci. 2010;256:2920–2926. doi: 10.1016/j.apsusc.2009.11.051
  • Ramírez A, Hillebrand P, Stellmach D, et al. Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C. 2014;118(26):14073–14081. doi: 10.1021/jp500939d
  • Geng Z, Wang Y, Liu J, et al. δ-MnO2–Mn3 O4 nanocomposite for photochemical water oxidation: active structure stabilized in the interface. ACS Appl Mater Interfaces. 2016;8:27825–27831. doi: 10.1021/acsami.6b09984
  • Jiang H, Zhao T, Yan C, et al. Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale. 2010;2:2195. doi: 10.1039/c0nr00257g
  • Wang Y, Zhang J, Yang Y, et al. NaOH concentration effect on the oriented attachment growth kinetics of ZnS. J Phys Chem B. 2007;111:5290–5294. doi: 10.1021/jp0688613
  • Zhang J, Lin Z, Lan Y, et al. A multistep oriented attachment kinetics: coarsening of ZnS nanoparticle in concentrated NaOH. J Am Chem Soc. 2006;128:12981–12987. doi: 10.1021/ja062572a
  • Dubal DP, Dhawale DS, Salunkhe RR, et al. Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. J Alloys Compd. 2010;497:166–170. doi: 10.1016/j.jallcom.2010.02.182
  • Nirmalesh Naveen A, Selladurai S. Investigation on physiochemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications. Electrochim Acta. 2014;125:404–414. doi: 10.1016/j.electacta.2014.01.161
  • Wang L, Chen L, Li Y, et al. Preparation of Mn3O4 nanoparticles at room condition for supercapacitor application. Powder Technol. 2013;235:76–81. doi: 10.1016/j.powtec.2012.10.010
  • Sankar KV, Kalpana D, Selvan RK. Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications. J Appl Electrochem. 2012;42:463–470. doi: 10.1007/s10800-012-0424-2
  • Sharma RK, Oh H-S, Shul Y-G, et al. Growth and characterization of carbon-supported MnO2 nanorods for supercapacitor electrode. Phys B. 2008;403:1763–1769. doi: 10.1016/j.physb.2007.10.007