1,427
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Transient Dean flow in an annulus: a semi-analytical approach

& ORCID Icon
Pages 169-176 | Received 19 Jun 2018, Accepted 12 Nov 2018, Published online: 30 Nov 2018

References

  • Dean WR. Fluid motion in a curved channel. In Proceeding Royal Soc Lond A: Math Phys Eng Sci. 1928;121:402–420. doi: 10.1098/rspa.1928.0205
  • Tsangaris S. Oscillatory of an incompressible viscous fluid in a straight annular pipe. J Mech Theory Appl. 1984;3(3):467–478.
  • Tsangaris S, Vlachakis NW. Exact solution of the Navier – Stokes equations for the oscillating flow in a duct of a cross-section of a right-angled isosceles triangle. J Appl Math (ZAMP). 2003;54(6):1094–1100. doi: 10.1007/s00033-003-2013-z
  • Deka RK, Takhar HS. Hydrodynamic stability of viscous flow between curved porous channel with radial flow. Int J Eng Sci. 2004;42:953–966. doi: 10.1016/j.ijengsci.2003.11.005
  • Barman K, Mothupally S, Sonjee A, et al. Fluid motion between rotating concentric cylinders using COMSOL Multiphysics. Computational Fluid Dynamics. COMSOL. Boston2015.
  • Dean WR, Hurst JM. Notes on the motion of fluids in a curved pipe. Mathematika, University College, London. 1959;6:77-85.
  • Erdogan ME, Imrak CE. On the steady flow of a Second - grade fluid between two coaxial porous cylinders Mathematical problems in Engineering. 2007.
  • Manos T, Marinakis G, Tsangaris S. Oscillating viscoelastic flow in a curved duct – Exact analytical and numerical solution. J Non-Newton Fluid Mech. 2006;135:8–15. doi: 10.1016/j.jnnfm.2005.11.008
  • Wang CY. On the low – Reynolds – number circular flow in a helical pipe. J Fluid Mech. 1981;108:185–194. doi: 10.1017/S0022112081002073
  • Aider AA, Skali S, Brancher JP. Laminar-turbulent transition in Taylor-Dean flow. J Phys: Conf Ser. 2005;14:118–127.
  • Aider AA, Kadem L. Transition to turbulence of the Dean and Taylor-Couette flows: Similarities. Multiphysics, Barcelona. 2011.
  • Gelfghat AY, Yariin AL, Bar-Yoseph PZ. Three dimensional instability of a two - layer Dean flow. Phys Fluids. 2001 Nov;13(11):3185–3195. doi: 10.1063/1.1409967
  • Habchi C, Khaled M, Lemenand T, et al. A semi - analytical approach for temperature distribution in Dean flow. Heat Mass Transf. 2014;50(1):23–30. doi: 10.1007/s00231-013-1222-z
  • Joo YL, Shaqfeh ES. A purely elastic instability in Dean and Taylor - Dean flow. Phys Fluids A: Fluids Dyn. 1992;4(3):524–543. doi: 10.1063/1.858325
  • Azadditalab M, Houshmand A, Sedaghat A. Numerical study on skin friction reduction of nano fluid flows in a Taylor - Couette system. Tribol Int. 2016;94:329–335. doi: 10.1016/j.triboint.2015.09.046
  • Jha BK, Apere CA. Time - dependent MHD Couette flow in a porous annulus. Commun Nonlinear Sci Numer Simul. 2013;18:1959–1969. doi: 10.1016/j.cnsns.2013.01.008
  • Tsangaris S, Kondaxakis D, Vlachakis NW. Exact solution of the Navier – Stokes equations for the pulsating Dean flow in a channel with porous walls. Int J Eng Sci. 2006;44:1498–1509. doi: 10.1016/j.ijengsci.2006.08.010
  • Tsangaris S, Vlachakis NW. Exact solution for the pulsating finite gap Dean flow. Appl Math Model. 2007;31:1899–1906. doi: 10.1016/j.apm.2006.06.011
  • Ellahi R, Zeeshan A, Shehzad N, et al. Structural impact of kerosene-Al 2 O 3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity: application of cooling process. J Mol Liq. 2018;264:607–615. doi: 10.1016/j.molliq.2018.05.103
  • Ijaz N, Zeeshan A, Rehman S. Effect of electro-osmosis and mixed convection on nano-bio-fluid with non-spherical particles in a curved channel. Mech Ind. 2018;19(1):108. doi: 10.1051/meca/2017040
  • Zeeshan A, Shehzad N, Ellahi R. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results Phys. 2018;8:502–512. doi: 10.1016/j.rinp.2017.12.024
  • Islam MZ, Mondal RN, Rashidi M. Dean-Taylor flow with convective heat transfer through a coiled duct. Comput Fluids. 2017;149:41–55. doi: 10.1016/j.compfluid.2017.03.001
  • Mondal RN, Islam MZ, Islam MS. Transient heat and fluid flow through a rotating curved rectangular duct: the case of positive and negative rotation. Procedia Eng. 2013;56:179–186. doi: 10.1016/j.proeng.2013.03.105
  • Jha BK, Odengle JO. Unsteady Couette flow in a Composite channel Partially Filled with porous Material: A semi-analytical approach. Transp Porous Media. 2015;107:219–234. doi: 10.1007/s11242-014-0434-0
  • Jha BK, Apere CA. Unsteady MHD Couette flow in an annulus: The Riemann - sum approach approach. J Phys Soc Jpn. 2010;79:1–5. doi: 10.1143/JPSJS.79SA.1
  • Jha BK, Yusuf TS. Transient free convective flow in an annulus porous medium: A semi - analytical approach. Eng Sci Technol, Int J. 2016;19:1936–1948. doi: 10.1016/j.jestch.2016.09.022
  • Khadrawi AF, Nimr MA. Unsteady natural convection fluid flow in a vertical micro channel under the effect of dual - phase - lag heat conduction model. Int J Thermophys. 2007;28:1387–1400. doi: 10.1007/s10765-007-0207-x
  • Tzou DY. Macro to Microscale heat transfer: The Lagging Behavior. Washington (DC): Taylor and Francis; 1997.
  • Richardson EG, Tyler E. The transverse velocity gradient near the mouths of the pipes in which an alternating or continuous flow of air is established. Proceeding Phys Soc. 1929;42(1):1–15. doi: 10.1088/0959-5309/42/1/302