3,107
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Metal-resistance encoding gene-fingerprints in some bacteria isolated from wastewaters of selected printeries in Ibadan, South-western Nigeria

ORCID Icon, ORCID Icon, &
Pages 266-273 | Received 16 Jul 2018, Accepted 14 Dec 2018, Published online: 04 Jan 2019

References

  • Ahmed S. Technology of printing inks, coating and adhesives. Polymer Sci. 2007.
  • J.T. Kunjappu, Essays in ink chemistry. New York: Nova Science Publishers; 2001.
  • Jern WNG. Industrial wastewater treatment. Singapore: Imperial College Press; 2006.
  • Herbst W, Hunger K. Industrial organic pigments. Third Edition. Copyright © 2004. Weinheim: WILEY-VCH Verlag GmbH and Co. KGaA; 2004. ISBN: 3-527-30576-9.
  • Hseu Z. Evaluating heavy metal contents in nine composts using four digestion methods. Biores Technol. 2004;95:53–59. doi: 10.1016/j.biortech.2004.02.008
  • Aleem A, Isar J, Malik A. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizosphere soil. Bioresour Technol. 2003;86:7–13. doi: 10.1016/S0960-8524(02)00134-7
  • Singh V, Chauhan PK, Kanta R, et al. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Int J of Pharm Sci Rev and Res. 2010;3:164–167.
  • Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E and Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester: 1991. p. 115–175.
  • Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981;145(3):1365–1373.
  • Borremans B, Hobman JL, Provoost A, et al. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol. 2001;183:5651–5658. doi: 10.1128/JB.183.19.5651-5658.2001
  • Nies A, Nies DH, Silver S. Nucleotide sequence and expression of a plasmid encoded chromate resistance determinants from Alcaligenes eutrophus. J Biol Chem. 1989;265(10):5648–5653.
  • Mijnendonckx K. Adaptive silver resistance in Cupriavidus metallidurans. Unpublished Ph.D thesis. Laboratory of Food and Environmental Microbiology (UCL), Microbiology Unit (SCK•CEN), Université Catholique de Louvain – Belgian Nuclear Research Centre. November 7, 2013; 2013.
  • Brown NL, Rouch DA, Lee BTO. Copper resistance determinants in bacteria. Plasmid. 1992;27:41–51. doi: 10.1016/0147-619X(92)90005-U
  • Brown NL, Barrett SR, Camakaris J, et al. Molecular genetics and transport analysis of the copper resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol. 1995;17:1153–1166. doi: 10.1111/j.1365-2958.1995.mmi_17061153.x
  • National Environmental Regulations (NER). Effluent limitation standards for textile, wearing Apparel Sector. National Environmental Standards and Regulatory Agency (NESREA). Abuja, Nigeria; 2009.
  • Dinu LD, Anghel L, Jurcoane S. Isolation of heavy metal resistant bacterial strains from the battery manufactured polluted environment. Rom. Biotechnol Letters. 2011.
  • Adekanmbi AO, Falodun OI. Physicochemical, Microbiological and heavy metal studies on water samples and bacteria obtained from Dandaru River in Ibadan. South-Western Nigeria. Afr J Microbiology Res. 2015;9:1357–1365. doi: 10.5897/AJMR2015.7388
  • Oriomah C, Adelowo OO, Adekanmbi AO. Bacteria from spent engine-oil-contaminated soils possess dual tolerance to hydrocarbon and heavy metals, and degrade spent oil in the presence of copper, lead, zinc and combinations thereof. Ann Microbiol. 2015;65:207–215. doi: 10.1007/s13213-014-0851-x
  • Raja EC, Anbazhagan K, Selvam GS. Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World J of Microbiol Biotechnol. 2006;22:577–585. doi: 10.1007/s11274-005-9074-4
  • Chihomvu P, Stegmann P, Pillay M. Identification and Characterization of heavy metal resistant bacteria from the Klip River. Proc Int Conf Ecol, Environ Biol Sci. 2015: 25–26.
  • Cooksey DA. Copper uptake and resistance in bacteria. Mol Microbiol. 1993;7:1–5. doi: 10.1111/j.1365-2958.1993.tb01091.x
  • Rouch DA. Plasmid mediated copper resistance in Escherichia coli. Ph.D. Thesis. The University of Melbourne, Parkville, Australia; 1986.
  • Rouch DA, Lee BTO, Camakaris J. Genetic and molecular basis of copper resistance in Escherichia coli. Mol Biol Chem. 1989: 439–446.
  • Williams IR, Morgan AG, Rouch DA, et al. Copper-resistant enteric bacteria from United Kingdom and Australian piggeries. Appl Environ Microbiol. 1993;59:2531–2537.
  • Cooksey DA, Azad HA, Cha J, et al. Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microbiol. 1990;56:431–435.
  • Brown NL, Rouch DA, Lee BTO. Copper resistance determinants in bacteria. Plasmid. 1992;27:41–51. doi: 10.1016/0147-619X(92)90005-U
  • Silver S, Lee BTO, Brown NL, et al. Bacterial plasmid resistances to copper, cadmium and zinc. In Chemistry of copper and zinc Triads. The Royal Soc Chem. 1993: 33–53.
  • Cooksey DA. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol Rev. 1994;14(4):381–386. doi: 10.1111/j.1574-6976.1994.tb00112.x
  • Odermatt A, Suter H, Krapf R, et al. An ATPase Operon involved in copper resistance by Enterococcus hirae. Ann N Y Acad Sci. 1992;471:484–486. doi: 10.1111/j.1749-6632.1992.tb43836.x
  • Odermatt A, Suter H, Krapf R, et al. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J of Biol Chem. 1993;268:12775–12779.
  • Alvarez AH, Moreno-Sanchez R, Cervantes C. Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol. 1999;81:7398–7400.
  • Ohta N, Galsworthy PR, Pardee AB. Genetics of sulfate transport in Salmonella typhimurium. J of Bacteriol. 1971;105:1053–1106.
  • Cervantes C, Silver S. Plasmid chromate resistance and chromate reduction. Plasmid. 1992;2:65–71. doi: 10.1016/0147-619X(92)90007-W
  • Mondaca MA, Gonzalez CL, Zaror CA. Isolation, characterization and expression of a plasmid encoding chromate resistance in Pseudomonas putida T2441. Lett Appl Microbiol. 1998;26:367–371. doi: 10.1046/j.1472-765X.1998.00349.x
  • Cervantes C, Ohtake H. Plasmid determined resistance to chromate in Pseudomonas aeruginosa FEMS. Microbiol Lett. 1988;56:173–176. doi: 10.1111/j.1574-6968.1988.tb03172.x
  • Collard JM, Corbiser P, Diel SL, et al. Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications. FEMS Microbiol Rev. 1994;14:404–414. doi: 10.1111/j.1574-6976.1994.tb00115.x
  • Ghosh A, Singh A, Ramteke PW, et al. Characterization of large plasmids encoding resistance to toxic heavy metals in Salmonella abortus equi. Biochem Biophy Res Comm. 2000;272:6–1. doi: 10.1006/bbrc.2000.2727
  • Verma T, Garg SK, Ramteke PW. Effect of ecological factors on conjugal transfer of chromium resistant plasmid in Escherichia coli isolated from tannery effluent. Appl Biochem Biotechnol. 2002;102:103), :5–20.
  • Kamala-Kannan S, Lee KJ. Metal tolerance and antibiotic resistance of Bacillus species isolated from Sunchon Bay sediments. South Korea Biotechnol. 2008;7:149–152.
  • Juhnke S, Peitzsch N, Hübener N, et al. New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol. 2002;179:15–25. doi: 10.1007/s00203-002-0492-5
  • Verma T, Garg SK, Ramteke PW. Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. J Appl Microbiol. 2009;107:1425–1432. doi: 10.1111/j.1365-2672.2009.04326.x
  • Janssen PJ, Van Houdt R, Moors H, et al. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One. 2010;5:e10433. doi: 10.1371/journal.pone.0010433
  • Van Houdt R, Mergeay M. Plasmids as Secondary Chromosomes. Mol Life Sci. 2012: 1–4.
  • Munson GP, Lam DL, Outten FW, et al. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol. 2000;182:5864–5871. doi: 10.1128/JB.182.20.5864-5871.2000
  • Grass G, Rensing C. Genes involved in copper homeostasis in Escherichia coli. J Bacteriol. 2001;183:2145–2147. doi: 10.1128/JB.183.6.2145-2147.2001
  • Outten FW, Huffman DL, Hale JA, et al. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem. 2001;276:30670–30677. doi: 10.1074/jbc.M104122200
  • Franke S, Grass G, Nies DH. The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiol. 2001;147:965–972. doi: 10.1099/00221287-147-4-965
  • Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27:341–353. doi: 10.1016/S0168-6445(03)00047-0
  • Levinson HS, Mahler I, Blackwelder P, et al. Lead resistance and sensitivity in Staphylococcus aureus. FEMS Microbiol Lett. 1996;145:421–425. doi: 10.1111/j.1574-6968.1996.tb08610.x
  • Levinson HS, Mahler I. Phosphatase activity and lead resistance in Citrobacter freundii and Staphylococcus aureus. FEMS Microbiol Lett. 1998;161:135–138. doi: 10.1111/j.1574-6968.1998.tb12939.x
  • Roane TM. Lead resistance in two bacterial isolates from heavy metal contaminated soils. Microbial Ecol. 1999;37:218–224. doi: 10.1007/s002489900145
  • Mire CE, Tourjee JA, O’Brien WF, et al. Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. Appl Environ Microbiol. 2004;70:855–864. doi: 10.1128/AEM.70.2.855-864.2004
  • Hynninen A, Touze T, Pitkanen L, et al. An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol. 2009;74:384–394. doi: 10.1111/j.1365-2958.2009.06868.x