2,317
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Photocatalytic degradation of atrazine by heteropolyoxotungstates

ORCID Icon, ORCID Icon & ORCID Icon
Pages 274-279 | Received 01 Jun 2018, Accepted 20 Dec 2018, Published online: 08 Jan 2019

References

  • Readman JW, Albanis TA, Barcelo D, et al. Herbicide contamination of Mediterranean estuarine waters: results from a MED POL pilot survey. Mar Pollut Bull. 1993;26:613–619. doi:10.1016/0025-326X(93)90500-J
  • Gray N. Drinking water quality. problems and solutions. Chichester: John Wiley & Sons; 1994. p. 132–148.
  • Encyclopedia of surface and colloid science. New York: Marcel Dekker; 2002.
  • Ali I, Aboul-Enein HY. Instrumental methods in metal ions speciation: chromatography, capillary electrophoresis and electrochemistry. New York: Taylor & Francis; 2006.
  • Chen C, Yang SG, Guo YP, et al. Photolytic destruction of endocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways. J Hazard Mater. 2009;172:675–684.
  • Ali I, Aboul-Enein HY, Gupta VK. Nanochromatography and nanocapillary electrophoresis: pharmaceutical and environmental analyses. Hoboken (NJ): Wiley & Sons; 2009.
  • Gupta VK, Ali I. Environmental water: advances in treatment, remediation and recycling. Amsterdam: Elsevier; 2012.
  • Basheer AA. Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality. 2018;30(4):402–406. doi:10.1002/chir.22808
  • Ali I, Jain CK. Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr Sci. 1998;75(10):1011–1014.
  • Ali I, Aboul-Enein HY. Determination of chiral ratio of o,p-DDT and o,p-DDD pesticides on polysaccharides chiral stationary phases by HPLC under reversed-phase mode. Environ Toxicol. 2002;17(4):329–333. doi:10.1002/tox.10069
  • Gupta PK. Reproductive and developmental toxicology. Academic Press: Elsevier; 2011. p. 503–521.
  • Ali I, ALOthman ZA, Al-Warthan A. Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int J Environ Sci Technol. 2016;13(2):733–742. doi:10.1007/s13762-015-0919-6
  • Neskovic NK, Elezovic I, Karan V, et al. Acute and subacute toxicity of atrazine to carp (Cyprinus carpio L.). Ecotoxicol Environ Safety. 1993;25:173–182.
  • Jain CK, Ali I. Determination of pesticides in water, sediments and soils by gas chromatography. Int J Environ Anal Chem. 1997;68(1):83–101. doi:10.1080/03067319708030482
  • Sanagi MM, Muhammad SS, Hussain I, et al. Novel solid-phase membrane tip extraction and gas chromatography with mass spectrometry methods for the rapid analysis of triazine herbicides in real waters. J Sep Sci. 2015;38(3):433–438. doi:10.1002/jssc.201400912
  • Ali I, Al-Othman ZA, Al-Warthan A. Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalin Water Treat. 2016;57(22):10409–10421. doi:10.1080/19443994.2015.1041164
  • Pathak RK, Dikshit AK. Atrazine and its use. Int J Res Chem Environ. 2012;2:1–6.
  • Hofman RS, Capel PD., Larson SJ. Comparison of pesticides in eight U.S. urban streams. Environ Toxicol Chem. 2000;19:2249–2258.
  • The list of priority substances in the field of Water Policy 2455/2001/EC (2001).
  • ChemicalSummary, Atrazine, Toxicityand ExposureAssessment for Children’s Health. In: USEPA, editor. U.S.2007.
  • Toxicological Profile for Atrazine. U.S. Department of health and human services; 2003.
  • Indicator Fact Sheet (WHS1a) Pesticides in Groundwater, (2004).
  • Atrazine and Its Metabolites in Drinking Water, 2011.
  • Arantegui J, Prado J, Chamarro E, et al. Kinetics of the UV degradation of atrazine in aqueous solution in the presence of hydrogen peroxide. J Photochem Photobiol A Chem. 1995;88:65–74.
  • Beltrán FJ, González M, Rivas FJ, et al. Aqueous UV radiation and UV/H2 O2 oxidation of atrazine first degradation products: deethylatrazine and deisopropylatrazine. Environ Toxicol Chem 1996;15:868–872.
  • Balmer ME, Sulzberger B. Atrazine degradation in irradiated iron/oxalate systems: effects of pH and oxalate. Environ Sci Technol. 1999;33: 2418–2424.
  • Moreira AJ, Borges AC, Gouvea LFC, et al. The process of atrazine degradation, its mechanism, and the formation of metabolites using UV and UV/MW photolysis. J Photochem Photobiol A Chem. 2017;347:160–167.
  • Burrows HD, Canle M, Santaballa JA, et al. Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B Biol. 2002;67:71–108.
  • Xu LJ, Chu W, Graham N. Atrazine degradation using chemical-free process of USUV: analysis of the micro-heterogeneous environments and the degradation mechanisms. J Hazard Mater. 2014;275:166–174.
  • Zhanqi G, Shaogui Y, Na T, et al. Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. J Hazard Mater. 2007;145:424–430.
  • Ta N, Hong J, Liu T, et al. Degradation of atrazine by microwave-assisted electrodeless discharge mercury lamp in aqueous solution. J Hazard Mater. 2006;138:187–194.
  • Hu E, Cheng H, Hu Y. Microwave-Induced degradation of atrazine sorbed in mineral micropores. Environ Sci Technol. 2012;46:5067–5076.
  • Hu E, Cheng H, Hu Y. Catalytic effect of transition metals on microwave-induced degradation of atrazine in mineral micropores. Water Res. 2014;57:8–19.
  • Li K, Chen T, Yan L, et al. Design of graphene and silica co-doped titania composites with ordered mesostructure and their simulated sunlight photocatalytic performance towards atrazine degradation. Colloids Surf A Physico Chem Eng Asp. 2013;422:90–99.
  • Troupis A. Photocatalytic reduction—recovery of silver using polyoxometalates. Appl Catal B Environ. 2003;42:305–315.
  • Zhang J, Goh J-K, Tan W. Mechanistic analysis of the electrocatalytic properties of dissolved α and β isomers of [SiW12O40]4- and Solid [Ru(bipy)3]2[α-SiW12O40] on the reduction of nitrite in acidic aqueous media. Inorg Chem. 2006;45:3732–3740.
  • Song L, Zhang S, Wu X, et al. One-step synthesis of composite semiconductor AgBr/Ag5P3O10 heterojunctions and their photocatalytic activity, kinetic analysis, photocatalytic mechanism under visible light radiation. Chem Eng J. 2013;214:336–342.
  • Kortz U, Müller A. Introduction: a special issue dedicated to Michael T. Pope. J Cluster Sci. 2006;17(2):139–141. doi:10.1007/s10876-006-0065-x
  • Kortz U. Polyoxometalates. Eur J Inorg Chem. 2009;2009(34):5056), doi:10.1002/ejic.200990096
  • Kortz U, Müller A, van Slageren J, et al. Polyoxometalates: fascinating structures, unique magnetic properties. Coord Chem Rev. 2009;253(19-20):2315–2327. doi:10.1016/j.ccr.2009.01.014
  • Kortz U, Liu T. The best of polyoxometalates. Eur J Inorg Chem. 2013;2013(10-11):1559–1560. doi:10.1002/ejic.201300230
  • Al-Oweini R, Aghyarian S, El-Rassy H. Immobilized polyoxometalates onto mesoporous organically-modified silica aerogels as selective heterogeneous catalysts of anthracene oxidation. J Sol-Gel Sci Technol. 2012;61(3):541–550. doi:10.1007/s10971-011-2657-7
  • Al-Oweini R, Sartorel A, Bassil BS, et al. Photocatalytic water Oxidation by a mixed-valent MnIII3MnIVO3 manganese oxo core that mimics the Natural Oxygen-Evolving Center. Angewandte Che - International Edition. 2014;53(42):11182–11185. doi:10.1002/anie.201404664
  • Natali M, Bazzan I, Goberna-Ferrón S, et al. Photo-assisted water oxidation by high-nuclearity cobalt-oxo cores: tracing the catalyst fate during oxygen evolution turnover. Green Chem. 2017;19(10):2416–2426. doi:10.1039/c7gc00052a
  • Canny J, Teze A, Thouvenot R, et al. Disubstituted tungstosilicates. 1. Synthesis, stability, and structure of the lacunary precursor polyanion of a tungstosilicate.gamma.-SiW10O368-. Inorg Chem. 1986;25:2114–2119.
  • Ginsberg AP. Inorganic syntheses. Berkeley Heights (NJ): Wiley-Interscience; 1990; Vol. 27.
  • Al-Oweini R, El-Rassy H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J Mol Struct. 2009;919(1-3):140–145. doi:10.1016/j.molstruc.2008.08.025
  • Al-Oweini R, Bassil BS, Palden T, et al. The manganese(III)-containing tungstophosphate [MnIII 3(H2O)5(A-α-PW9O 34)2]9. Polyhedron. 2013;52:461–466. doi:10.1016/j.poly.2012.08.050
  • Al-Oweini R, Bassil BS, Friedl J, et al. Synthesis and characterization of multinuclear manganese-containing tungstosilicates. Inorg Chem. 2014;53(11):5663–5673. doi:10.1021/ic500425c
  • Al-Oweini R, Bassil BS, Itani M, et al. The mixed-valent 10-manganese(III/IV)-containing 36-tungsto-4-arsenate(V), [MnIII6MnIV4O4(OH)12(H2O)12(A-[beta]-AsW9O34)4]22. Acta Crystallogr Sect C. 2018;74(11):1390–1394. doi:10.1107/S2053229618014183
  • Poblet JM, López X, Bo C. Ab initio and DFT modelling of complex materials: towards the understanding of electronic and magnetic properties of polyoxometalates. Chem Soc Rev. 2003;32:297–308.
  • Allmen KV, Moré R, Mìller R, et al. Nickel-containing Keggin-type polyoxometalates as hydrogen evolution catalysts: Photochemical structure-activity relationships. ChemPlusChem. 2015;80:1389–1398.