709
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Sensitivity measurement for asymmetric two two-level atoms interacting with field obeys SU(1,1) Lie group via atomic inversion

ORCID Icon &
Pages 309-317 | Received 16 Jul 2018, Accepted 13 Jan 2019, Published online: 31 Jan 2019

References

  • Jayness ET, Cummings FW. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE. 1963;51:89–109. doi: 10.1109/PROC.1963.1664
  • Cummings FW. Stimulated Emission of Radiation in a Single Mode. Phys Rev. 1965;140:A1051–A1056. doi: 10.1103/PhysRev.140.A1051
  • Huang YX, Guo GC. A new measure for the Jaynes–Cummings model dynamics. Chin Phys. 1996;5:901–910.
  • Scully MO, Zubairy MS. Quantum optics. Cambridge: Cambridge University Press; 2005.
  • Kaluzny Y, Goy P, Gross M, et al. Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys Rev Lett. 1983;51:1175–1178. doi: 10.1103/PhysRevLett.51.1175
  • Rempe G, Walther H, Klein N. Observation of quantum collapse and revival in a one-atom maser. Phys Rev Lett. 1987;58:353–356. doi: 10.1103/PhysRevLett.58.353
  • Boca A, Miller R, Birnbaum KM, et al. Observation of the vacuum Rabi spectrum for one trapped atom. Phys Rev Lett. 2004;93:233603. doi: 10.1103/PhysRevLett.93.233603
  • Nielsen MA, Chuang IL. Quantum computation and quantum information. Cambridge: Cambridge University Press; 2000.
  • Benenti G, Casati G, Strini G. Principle of quantum computation and information. Singapore: World Scientific; 2005.
  • Bouwmeester D, Ekert A, Zeilinger A, editors. The physics of quantum information. Berlin: Springer; 2000.
  • Loss D, Di Vincenzo DP. Quantum computation with quantum dots. Phys Rev A. 1998;57:120–126. doi: 10.1103/PhysRevA.57.120
  • Levy J. Quantum-information processing with ferroelectrically coupled quantum dots. Phys Rev A. 2001;64:052306. doi: 10.1103/PhysRevA.64.052306
  • Bennett CH, Di Vincenzo DP. Quantum information and computation. Nature. 2000;404:247–255. doi: 10.1038/35005001
  • Burkard G, Loss D. Cancellation of spin-orbit effects in quantum gates based on the exchange coupling in quantum dots. Phys Rev Lett. 2002;88:047903. doi: 10.1103/PhysRevLett.88.047903
  • Braunstein SL, Kimble HJ. Teleportation of continuous quantum variables. Phys Rev Lett. 1998;80:869–872. doi: 10.1103/PhysRevLett.80.869
  • Milburn GJ, Braunstein SL. Quantum teleportation with squeezed vacuum states. Phys Rev A. 1999;60:937–942. doi: 10.1103/PhysRevA.60.937
  • Bennet CH, Weisner SJ. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys Rev Lett. 1992;69:2881–2884. doi: 10.1103/PhysRevLett.69.2881
  • Abdel-Aty M, Abdalla MS, Sander BC. Tripartite entanglement dynamics for an atom interacting with nonlinear couplers. Phys Lett A. 2009;373:315–319. doi: 10.1016/j.physleta.2008.11.036
  • Imamoglu A, Awschalom DD, Burkard G, et al. Quantum information processing using quantum dot spins and cavity QED. Phys Rev Lett. 1999;83:4204–4207. doi: 10.1103/PhysRevLett.83.4204
  • Zhang G-F, Li S-S. Thermal entanglement in a two-spin-qutrit system under a nonuniform external magnetic field. Eur Phys J D. 2006;37:123–127. doi: 10.1140/epjd/e2005-00235-1
  • Hu Z-N, Youn SH, Kang K, et al. Entanglement of a two-qubit system with anisotropic couplings in nonuniform magnetic fields. J Phys A Math Gen. 2006;39:10523–10535. doi: 10.1088/0305-4470/39/33/019
  • Abdalla MS, Lashin E, Sadiek G. Entropy and variance squeezing for time-dependent two-coupled atoms in an external magnetic field. J Phys B At Mol Opt Phys. 2008;41:015502. doi: 10.1088/0953-4075/41/1/015502
  • Sadiek G, Lashin E, Abdalla MS. Entanglement of a two-qubit system with anisotropic XYZ exchange coupling in a nonuniform time-dependent external magnetic field. Phys B. 2009;404:1719–1728. doi: 10.1016/j.physb.2009.02.011
  • El-Orany FAA, Abdalla MS. Variance squeezing and entanglement of the XX central spin model. J Phys A Math Theor. 2011;44:035302. doi: 10.1088/1751-8113/44/3/035302
  • Abdalla MS. Isotropic time-dependent coupled oscillators. Phys Rev A. 1987;35:4160–4166. doi: 10.1103/PhysRevA.35.4160
  • Abdalla MS. Quantum treatment of the time-dependent coupled oscillators. J Phys A Math Gen. 1996;29:1997–2012. doi: 10.1088/0305-4470/29/9/015
  • Abdalla MS, Nassar MM. Quantum treatment of the time-dependent coupled oscillators under the action of a random force. Ann Phys. 2009;324:637–669. doi: 10.1016/j.aop.2008.09.006
  • Abdalla MS, Ahmed MMA, Al-Homidan S. Quantum statistics of three modes coupled oscillators. J Phys A Math Gen. 1998;31:3117–3140. doi: 10.1088/0305-4470/31/14/003
  • Abdalla MS. Qunatum treatment of time dependent coupled oscillators. Int J Mod Phys B. 2002;16:2837–2855. doi: 10.1142/S021797920201035X
  • Abdalla MS, Hassan SS, Obada A-SF. Multiphoton transition in the Tavis–Cummings model. Phys Rev A. 1986;34:4869–4874. doi: 10.1103/PhysRevA.34.4869
  • Hassan SS, Abdalla MS, Obada A-SF, et al. Periodic squeezing in the Tavis–Cummings model. J Mod Opt. 1993;40:1351–1367. doi: 10.1080/09500349314551401
  • Abdalla MS, Perina J, Krepelka J. Statistical properties of multiphoton time-dependent three-boson coupled oscillators. J Opt Soc Am B. 2006;23:1146–1160. doi: 10.1364/JOSAB.23.001146
  • Abdalla MS, Perina J, Krepelka J. Non-classical effect of quantum non-demolition measurement in presence of parametric amplification. Opt Commun. 2009;282:2878–2888. doi: 10.1016/j.optcom.2009.03.053
  • Tavis M, Cummings M. Exact solution for an N-molecule-radiation-field Hamiltonian. Phys Rev. 1868;170:379–384. doi: 10.1103/PhysRev.170.379
  • Tavis M, Cummings M. Approximate solutions for an N-molecule-radiation-field Hamiltonian. Phys Rev. 1969;188:692–695. doi: 10.1103/PhysRev.188.692
  • Khalil EM, Abdalla MS, Obada A-SF, et al. Entropic uncertainty in two two-level atoms interacting with a cavity field in presence of degenerate parametric amplifier. J Opt Soc Am B. 2010;27:266. doi: 10.1364/JOSAB.27.000266
  • Khalil EM, Abdalla MS, Obada A-SF. Entropy and variance squeezing of two coupled modes interacting with a two-level atom: frequency converter type. Ann Phys. 2006;321:421–434. doi: 10.1016/j.aop.2005.09.004
  • Abdalla MS, Khalil EM, Obada A-SF. Statistical properties of a two-photon cavity mode in the presence of degenerate parametric amplifier. Ann Phys. 2007;322:2554–2568. doi: 10.1016/j.aop.2006.12.003
  • Khalil EM, Abdalla MS, Obada A-SF. Pair entanglement of two-level atoms in the presence of a nondegenerate parametric amplifier. J Phys B. 2010;43:095507. doi: 10.1088/0953-4075/43/9/095507
  • Abdalla MS, Obada A-SF, Abdel-Aty M. Von Neumann entropy and phase distribution of two mode parametric amplifier interacting with a single atom. Ann Phys. 2005;318:266–285. doi: 10.1016/j.aop.2005.01.002
  • Abdalla MS, Krepelka J, Perina J. Effect of Kerr-like medium on a two-level atom in interaction with bimodal oscillators. J Phys B At Mol Opt Phys. 2006;39:1563–1577. doi: 10.1088/0953-4075/39/7/001
  • Abdalla MS, Elech H, Perina J. Quantum treatment of atom–field interaction via the quadratic invariant. J Opt Soc Am B. 2012;29:719–728. doi: 10.1364/JOSAB.29.000719
  • Abdalla MS, Khalil EM, Obada A-SF. Exact treatment of the Jaynes–Cummings model under the action of an external classical field. Ann Phys. 2011;326:2486–2498. doi: 10.1016/j.aop.2011.05.005
  • Khalil EM, Abdalla MS. Entropic uncertainty for two atoms interacting with a cavity field under the influence of two photons (off-resonance case). J Russ Laser Res. 2012;33:128–142. doi: 10.1007/s10946-012-9267-x
  • Abdalla MS, Khalil EM. Two coupled oscillators in the form of a frequency converter in interaction with a single atom via two-photon processes. J Russ Laser Res. 2012;33:336–348. doi: 10.1007/s10946-012-9288-5
  • Abdalla MS, Ahmed MMA. Some statistical properties for a spin-(1/2) particle coupled to two spirals. Opt Commun. 2012;285:3578–3586. doi: 10.1016/j.optcom.2012.04.014
  • Abdalla MS, Ahmed MMA. Entropy squeezing and entanglement of the interaction between SU(1,1) and SU(2) quantum systems. Opt Commun. 2011;284:1933–1940. doi: 10.1016/j.optcom.2010.12.058
  • Abdalla MS, Ahmed MMA. Some statistical properties for the interaction between SU(1,1) and SU(2) quantum systems. J Phys B At Mol Opt Phys. 2010;43:155503. doi: 10.1088/0953-4075/43/15/155503
  • Ng KM, Lo CF, Liu KL. Exact eigenstates of the intensity-dependent Jaynes–Cummings model with the counter-rotating term. Phys A. 2000;275:463–474. doi: 10.1016/S0378-4371(99)00401-X
  • Masashi B. Decomposition formulas for Su(1,1) and Su(2) Lie algebras and their applications in quantum optics. J Opt Soc Am B. 1993;10:1347–1359. doi: 10.1364/JOSAB.10.001347
  • Abdalla MS, Khalil EM, and Obada A-SF, et al. Linear entropy and squeezing of the interaction between two quantum system described by su(1,1) and su(2) Lie group in presence of two external terms. AIP Adv. 2017;7:015013. doi: 10.1063/1.4973916
  • Abdalla MS, Ahmed MMA, Obada A-SF. Quantum treatment for two two-level atoms in interaction with an SU(1,1) quantum system. J Russ Laser Res. 2013;34:87–101. doi: 10.1007/s10946-013-9328-9
  • Abdalla MS, Khalil EM, Obada A-SF, et al. Quantum statistical characteristics of the interaction between two two-level atoms and radiation field. Eur Phys J Plus. 2015;130:227. doi: 10.1140/epjp/i2015-15227-9
  • Nahla AA, Ahmed MMA. Nonclassical properties of asymmetric two two-level atoms interacting with multi-photon quantized field. Int J Mod Phys. 2018;32:1850250. doi: 10.1142/S0217979218502508