2,322
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Construction of a novel vector for the nuclear transformation of the unicellular green alga Chlamydomonas reinhardtii and its stable expression

ORCID Icon, ORCID Icon & ORCID Icon
Pages 529-535 | Received 12 Nov 2018, Accepted 22 Mar 2019, Published online: 15 Apr 2019

References

  • León R, Fernández E. Nuclear transformation of eukaryotic microalgae. In: León R, Galván A, Fernández E, editors. Transgenic microalgae as green cell factories. advances in experimental medicine and biology. Vol. 616. New York (NY): Springer; 2007. p. 1–31.
  • Cerutti H, Johnson AM, Gillham NW, et al. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. Genetics. 1997;145:97–110.
  • Schroda M, Blocker D, Beck CF. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J. 2000;21:121–131. doi: 10.1046/j.1365-313x.2000.00652.x
  • Chang M, Li F, Odom OW, et al. A cosmid vector containing a dominant selectable marker for cloning Chlamydomonas genes by complementation. Plasmid. 2003;49:75–78. doi: 10.1016/S0147-619X(02)00158-0
  • Neupert J, Shao N, Lu Y, et al. Genetic transformation of the model green alga Chlamydomonas reinhardtii. In: Dunwell J, Wetten A, editors. Transgenic plants. Methods in molecular biology (Methods and Protocols). Vol. 847. New York: Humana Press; 2012. p. 35–47.
  • Kang S, Kim K, Kim Y. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode. Sci Rep. 2015;5:15835. doi:10.1038/srep15835.
  • Can Ö, Kudug H, Pabuccu K, et al. Electroporation-mediated GFP gene transfer into model organism Chlamydomonas reinhardtii. KSU J Nat Sci. 2017;20(2): 89–94. doi: 10.17780/ksujes.321514
  • Boynton JE, Gillham NW, Harris EH, et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science. 1988;240:1534–1538. doi: 10.1126/science.2897716
  • El-Sheekh MM. Stable chloroplast transformation in Chlamydomonas reinhardtii using microprojectile bombardment. Folia Microbiol. 2000;45:496–504. doi: 10.1007/BF02818717
  • Remacle C, Ardol P, Cooseman N, et al. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to nsert mutations in complex I genes. Proc Natl Acad Sci USA. 2006;103:4771–4776. doi: 10.1073/pnas.0509501103
  • Shimogawara K, Fujiwara S, Grossman A, et al. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics. 1998;148:1821–1828.
  • Ladygin VG, Butanaev AM. Transformation of Chlamydomonas reinhardtii CW-15 with the hygromycin phosphotransferase gene as a selective marker. Genetika. 2002;38:1196–1202.
  • Ladygin VG. The transformation of the unicellular green alga Chlamydomonas reinhardtii by electroporation. Mikrobilojiia. 2003;72:658–665.
  • Ladygin VG. An efficient way for obtaining transformants of Chlamydomonas reinhardtii by electroporation. Bifizika. 2004;49:700–704.
  • Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad. Sci USA. 1990;87:1228–1232. doi: 10.1073/pnas.87.3.1228
  • Sizova IA, Labina TV, Frolova ON, et al. Stable nuclear transformation of Chlamydomonas reinhardtii with Streptomyces rimosus gene as selective marker. Gene. 1996;181: 13–18. doi: 10.1016/S0378-1119(96)00384-8
  • Dunahay TG. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques. 1993;15:452–455.
  • Kumar SV, Misquitta RW, Reddy VS, et al. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 2004;166:731–738. doi: 10.1016/j.plantsci.2003.11.012
  • Rajam MV, Kumar SV. Green alga (Chlamydomonas reinhardtii) Agrobacterium protocols. Methods Mol Biol. 2006;344:421–434.
  • Pratheesh PT, Vineetha M, Kurup GM. An efficient protocol for the agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol Biotechnol. 2014;56:507–515. doi: 10.1007/s12033-013-9720-2
  • Mueller DG. Host-virus interactions in marine brown algae. Hydrobiol. 1996;326–327:21–28. doi: 10.1007/BF00047783
  • Chow KC, Tung WL. Electrotransformation of Chlorella vulgaris. Plant Cell Rep. 1999;18:778–780. doi: 10.1007/s002990050660
  • Klein U, Camp DD, Bogorad L. Two types of chloroplast promoters in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA. 1992;89:3453–3457. doi: 10.1073/pnas.89.8.3453
  • Kasai S, Yoshimura S, Ishikura K, et al. Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. J Biosci Bioeng. 2003;95:276–282. doi: 10.1016/S1389-1723(03)80029-4
  • TenLohuis MR, Miller DG. Genetic transformation of dinoflagellates Amphidinium and Symbiodinium: expression of GUS in microalgae using heterologous promoter constructs. Plant J. 1998;13:427–435. doi: 10.1046/j.1365-313X.1998.00040.x
  • Walker TL, Becker DK, Collet C. Characterisation of the Dunaliella tertiolecta RbcS genes and their promoter activity in Chlamydomonas reinhardtii. Plant Cell Rep. 2005;23:727–735. doi: 10.1007/s00299-004-0884-x
  • Hallmann A, Wodniok S. Swapped green algal promoters: aphVIII-based gene constructs with Chlamydomonas flanking sequences work as dominant selectable markers in Volvox and vice versa. Plant Cell Rep. 2006;25:582–591. doi: 10.1007/s00299-006-0121-x
  • Harris EH. The Chlamydomonas source book. A comprehensive guide to biology and laboratory use. San Diego, Academic Press; 1989. p. 780.
  • Odell JT, Nagy F, Chua N-H. Identification of DNA sequences required for the activity of the cauliflower mosaic virus 35s promoter. Nature. 198;313:810–812. doi: 10.1038/313810a0
  • Walden R, Koncz C, Schell J. 1990. The use of gene vectors in plant molecular biology. Method Mol Cellul Biol. 1990;1:175–194.
  • Rochaix J-D. Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet. 1995;29:209–230. doi: 10.1146/annurev.ge.29.120195.001233
  • Lee KL, Lee HL. Eukaryotic algal genes and progress in Molecular biology of eukaryotic algae. Algae. 2001;16: 1–19.
  • Sanford JC, Smith FD, Russell JA. Optimizing the biolistic process for different biological applications. Method Enzymol. 1993;217:483–509. doi: 10.1016/0076-6879(93)17086-K
  • Sodeinde OA, Kindle KL. Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA. 1993;90:9199–9203. doi: 10.1073/pnas.90.19.9199
  • Haas M, Dowding J. Aminoglycoside modifying enzymes. Method Enzymol. 1975;43:611–628. doi: 10.1016/0076-6879(75)43124-X
  • Jefferson JG, Kavanagh TA, Bevan MW. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6:3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x
  • Bradford MM. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Kindle KL. Nuclear transformation: technology and applications. In: Rochaix J-D, Goldschmidt-Clermont M, Merchant M, editors. The molecular biology of chloroplast and mitochondria in Chlamydomonas. Dordrecht: Kluwer Academic Publishers; 1998. p. 139–149.
  • Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site directed transformation of Chlamydomonas. Nucleic Acids Res. 1991;19:4083–4089. doi: 10.1093/nar/19.15.4083
  • Leu S, Schlesinger J, Michaels A, et al. Complete DNA sequence of the Chlamydomonas reinhardtii chloroplast atpA gene. Plant Mol Biol. 1992;18:613–616. doi: 10.1007/BF00040681
  • Sakamoto W, Kindle K, Stern DB. In vivo analysis of Chlamydomonas chloroplast petD gene expression using stable transformation of beta-glucuronidase translational fusions. Proc Natl Acad Sci USA. 1993;90:497–501. doi: 10.1073/pnas.90.2.497
  • El-Sheekh MM. Stable transformation of the intact cells of Chlorella kessleri with high velocity microprojectiles. Biol Plant. 1999;42:209–216. doi: 10.1023/A:1002104500953
  • Ishikura K, Takaoka Y, Kato K, et al. Expression of a foreign gene in Chlamydomonas reinhardtii chloroplast. J Biosci Bioeng. 1999;87:307–314. doi: 10.1016/S1389-1723(99)80037-1
  • Zaslavskaia LA, Lippmeier JC, Kroth PG, et al. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol. 2000;36:379–386. doi: 10.1046/j.1529-8817.2000.99164.x
  • Liu L, Wang Y, Zhang Y, et al. Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol Biotechnol. 2013;54(2):211–219. doi: 10.1007/s12033-012-9554-3
  • Goldschmidt-Clermont M. Chloroplast transformation and reverse genetics. In: Rochaix J-D, Goldschmidt-Clermont M, Merchant M, editors. The molecular biology of chloroplast and mitochondria in Chlamydomonas. Dordrecht: Kluwer Academic Publishers; 1998. p. 139–149.