910
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

High pressure compression behaviour of bulk and nanocrystalline SnO2

ORCID Icon & ORCID Icon
Pages 592-596 | Received 05 Feb 2019, Accepted 23 Apr 2019, Published online: 02 May 2019

References

  • Alivisatos AP, Barbara PF, Castleman AW, et al. From molecules to materials: current trends and future directions. Adv Mater. 1998;10: 1297–1336. doi: 10.1002/(SICI)1521-4095(199811)10:16<1297::AID-ADMA1297>3.0.CO;2-7
  • Schiotz J, DiTolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature. 1998;391: 561–563. doi: 10.1038/35328
  • Qadri SB, Skelton EF, Dinsmore HJZ, et al. The effect of particle size on the structural transitions in zinc sulfide. J Appl Phys. 2001;89: 115–119. doi: 10.1063/1.1328066
  • Chen JS, Lou XW. SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small. 2013;9: 1877–1893. doi: 10.1002/smll.201202601
  • Liu Y, Jiao Y, Zhang Z, et al. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interfaces. 2014;6: 2174–2184. doi: 10.1021/am405301v
  • Batzill M, Diebold U. The surface and materials science of tin oxide. Prog Surf Sci 2005;79: 47–154. doi: 10.1016/j.progsurf.2005.09.002
  • Lou XW, Li CM, Archer LA. Designed synthesis of coaxial SnO2 @carbon hollow nanospheres for highly reversible lithium storage. Adv Mater. 2009;21: 2536–2539. doi: 10.1002/adma.200803439
  • Meduri P, Pendyala C, Kumar V, et al. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 2009;9: 612–616. doi: 10.1021/nl802864a
  • Pusawale SN, Deshmukh PR, Lokhande CD. Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application. Appl Surf Sci. 2011;257: 9498–9502. doi: 10.1016/j.apsusc.2011.06.043
  • Faraji S, Ani FN. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors – a review. J Power Sources. 2014;263: 338–360. doi: 10.1016/j.jpowsour.2014.03.144
  • Zhang J, Guo J, Xu H, et al. Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gas-sensing performance. ACS Appl Mater Interfaces. 2013;5: 7893–7898. doi: 10.1021/am4019884
  • Sun YH, Dong PP, Lang X, et al. Comparative study of electrochemical performance of SnO2 anodes with different nanostructures for lithium-ion batteries. J Nanosci Nanotechno. 2015;15: 5880–5888. doi: 10.1166/jnn.2015.10282
  • Jiao Z, Chen D, Jiang Y, et al. Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries. J Mater Res 2014;29: 609–616. doi: 10.1557/jmr.2014.32
  • Zhang Y, Kolmakov A, Lilach Y, et al. Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. J Phy Chem B. 2005;109: 1923–1929. doi: 10.1021/jp045509l
  • Kar A, Sain S, Kundu S, et al. Influence of size and shape on the photocatalytic properties of SnO2 nanocrystals. Chem Phys Chem. 2015;16: 1017–1025. doi: 10.1002/cphc.201402864
  • Li Z, Wang H, Qin Z. A rapid and efficient method to prepare aligned SnO2 nanorod arrays for field-emission application. Vacuum. 2009;83: 1340–1343. doi: 10.1016/j.vacuum.2009.04.036
  • Dattoli EN, Wan Q, Guo W, et al. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett. 2007;7: 2463–2469. doi: 10.1021/nl0712217
  • Wang X, Fan H, Ren P. Self-assemble flower-like SnO2/Ag heterostructures: correlation among composition, structure and photocatalytic activity. Colloids Surf A. 2013;419: 140–146. doi: 10.1016/j.colsurfa.2012.11.050
  • Kumar R, Kumar M. Size dependence of thermoelastic properties of nanomaterials. Inter J Nanosci. 2010;9: 537–542. doi: 10.1142/S0219581X10007113
  • Kumar R, Kumar M. Effect of size on cohesive energy, melting temperature and debye temperature of nanomaterials. Indian J Pure & Appl Phys. 2012;50:329–334.
  • Bhatt JC, Kholiya K. Effect of size on the elastic and thermodynamic properties of nanomaterials. Indian J Pure & Appl Phys. 2014;52:604–608.
  • Chandra J, Kholiya K. Diameter-dependent thermodynamic and elastic properties of metallic nanoparticles. Modern Phys Lett B. 2015;29: 1550025. doi: 10.1142/S0217984915500256
  • Qi WH. Size effect on melting temperature of nanosolids. Physica B. 2005;368: 46–50. doi: 10.1016/j.physb.2005.06.035
  • Bai HY, Luo LL, Jin D, et al. Particle size and interfacial effect on the specific heat of nanocrystalline Fe. J Appl Phys. 1996;79: 361–364. doi: 10.1063/1.360838
  • Shanker J, Kumar M. Thermodynamic approximations in high-pressure and high-temperature physics of solids. Phys Stat Sol B. 1993;179: 351–356. doi: 10.1002/pssb.2221790209
  • Kushwah SS, Kumar P, Shanker J. Analysis of pressure - volume - temperature relationship for some alkali halide crystals. Physica B. 1996;229: 85–90. doi: 10.1016/S0921-4526(96)00507-8
  • Anderson OL, Isaak DG, Oda H. High-temperature elastic constant data on minerals relevant to geophysics. Rev Geophys. 1992;30: 57. doi: 10.1029/91RG02810
  • Kumar M. High pressure equation of state for solids. Physica B. 1995;212: 391–394. doi: 10.1016/0921-4526(95)00361-C
  • Hayward ATJ. Compressibility equations for liquids: a comparative study. Brit J App Phys. 1967;18: 965–977. doi: 10.1088/0508-3443/18/7/312
  • He Y, Liu JF, Chen W, et al. High-pressure behavior of SnO2 nanocrystals. Phys Rev B. 2005;72: 212102. doi: 10.1103/PhysRevB.72.212102