859
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nonlinear optical studies of calcium tartrate crystals

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 611-615 | Received 19 Nov 2018, Accepted 22 Apr 2019, Published online: 09 May 2019

References

  • Craxton RS, Jacobs SD, Rizzo JE, et al. Basic properties of KDP related to the frequency conversion of 1 µm laser radiation. IEEE J Quantum Electron. 1981;17(9):1782. doi: 10.1109/JQE.1981.1071349
  • Shajan XS, Mahadevan C. On the growth of calcium tartrate tetrahydrate single crystals. Bull Mater Sci. 2004;27:327. doi: 10.1007/BF02704767
  • Labutina L, Marychev MO, Portnov VN, et al. Second-order nonlinear susceptibilities of the crystals of some metal tartrates. Crystallogr Rep. 2011;56 (1):72. doi: 10.1134/S1063774510061082
  • Titaeva EK, Somov NV, Portnov VN, et al. Crystal structure of monobasic sodium tartrate monohydrate. Crystallogr Rep. 2015;60(1):72. doi: 10.1134/S1063774515010265
  • Vivek P, Roop Kumar R, Murugakoothan P. Synthesis, growth, optimization, bulk SR method growth, fabrication of indigenous optical element and anisotropic studies on guanidinium L-monohydrogen tartrate (GuHT) single crystal for nonlinear optical device applications. J Cryst Growth. 2015;412:40. doi: 10.1016/j.jcrysgro.2014.11.042
  • Shah A, Patel IB. FTIR and XRD study of barium tartrate (BaC4H4O6) crystals grown by gel method. AIP Conf Proc. 2010;1249:192. doi: 10.1063/1.3466554
  • Medrano C, Gunter P, Arend H. Noncentrosymmetry Observed in CaC4H4O6· 4H2O Crystals by Nonlinear Optical Measurements. Phys Status Solidi B. 1987;14B:749.
  • Ambady GK. The crystal and molecular structures of strontium tartrate trihydrate and calcium tartrate tetrahydrate. Acta Crystallogr. 1968;B24:1548. doi: 10.1107/S0567740868004619
  • Brehat F, Wyneke B. Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals. J Phys B. 1989;22:1891. doi: 10.1088/0953-4075/22/11/020
  • Hawthorne FC, Borys I, Ferguson RB. Structure of calcium tartrate tetrahydrate. Acta Cryst. 1982;38:2461. doi: 10.1107/S0567740882009042
  • Johnson NW.  Convex polyhedra with regular faces. Canadian J Math. 1966;18:169. doi: 10.4153/CJM-1966-021-8
  • Nakatani N. Point group determination of calcium tartrate by etch figure. Jpn J Appl Phys. 1991;30:1961. doi: 10.1143/JJAP.30.L1961
  • Rethinam FJ, Arivuoli D, Ramasamy P. Growth and characterization of pure and cadmium doped strontium tartrate tetrahydrate single crystals. Mater Res Bull. 1994;29:309. doi: 10.1016/0025-5408(94)90028-0
  • Selvarajan P, Gon BN, Rao KV. Infrared spectroscopic and thermal studies of calcium tartrate single crystals grown by silica-gel technique. J Mater Sci Lett. 1993;12:1210.
  • Bohandy J, Murphy JC. An X-ray study of gel-grown strontium tartrate tetrahydrate. Acta Crysta Uogr. 1968;24:286. doi: 10.1107/S0567740868002141
  • Torres ME, Lopez T, Stockel J, et al. Structural characterization of doped calcium tartrate tetrahydrate. J Solid State Chem. 2002;163:491. doi: 10.1006/jssc.2001.9435
  • Sahaya Shajan X, Mahadevan C. FT-IR spectroscopic and thermal studies on pure and impurity added calcium tartrate tetrahydrate crystals. Cryst Res Technol. 2005;40:598. doi: 10.1002/crat.200410389
  • Saban KV, Jini T, Varghese G. Influence of magnetic field on the growth and properties of calcium tartrate crystals. J Magn Magn Mater. 2003;265:296. doi: 10.1016/S0304-8853(03)00278-6
  • Tanimoto Y. Electric and magnetic field effects. In: Nagakura S, editor. Functionality of molecular systems. Tokyo: Springer; 1998. p. 301.
  • Higashitani K, Okuhara K, Hatade S. Effects of magnetic fields on stability of nonmagnetic ultrafine colloidal particles. J. Colloid Interface Sci. 1992;152:125. doi: 10.1016/0021-9797(92)90013-C
  • Higashitani K, Kage A, Katamura S, et al. Effects of a magnetic field on the formation of CaCO3 particles. J. Colloid Interface Sci. 1993;156:90. doi: 10.1006/jcis.1993.1085
  • Fujiwara M, Tokunaga R, Tanimoto Y. Crystal growth of potassium nitrate in a magnetic field of 80 kOe. J Phys Chem B. 1998;102:5996. doi: 10.1021/jp981675f
  • Fujiwara M, Chidiwa T, Tokunaga R, et al. Crystal growth of trans-Azobenzene in a magnetic field of 80 kOe. J Phys Chem B. 1998;102:3417. doi: 10.1021/jp980289v
  • Suryanarayana K, Dharmaprakash SM. Linear and non-linear optical and electromagnetic properties of Ba2+ substituted calcium tartrate tetrahydrate crystals. Mater Chem Phys. 2003;77:179. doi: 10.1016/S0254-0584(01)00582-X
  • Medrano C, Günter P, Arend H. Noncentrosymmetry observed in cac4h4o6 4h2o crystals by nonlinear optical measurements. Ferroelectrics. 1989;94(1):111. doi: 10.1080/00150198908014241
  • Bahae MS, Said AA, Van Stryland EW. High-sensitivity, single-beam n_2 measurements. Opt Lett 1989;14:955. doi: 10.1364/OL.14.000955
  • Irimpan L, Krishnan B, Deepthy A, et al. Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO. J Appl Phys. 2008;103:033105. doi: 10.1063/1.2838178
  • Irimpan L, Nampoori VPN, Radhakrishnan P. Spectral and nonlinear optical characteristics of nanocomposites of ZnO–CdS. J Appl Phys. 2008;103:094914. doi: 10.1063/1.2919109
  • Rejeena I, Thomas V, Mathew S, et al. Spectral and lensing characteristics of gel-derived strontium tartrate single crystals using dual-beam thermal lens technique. J Fluoresc. 2016;26:1549. doi: 10.1007/s10895-016-1875-3
  • Irimpan L, Nampoori VPN, Radhakrishnan P. Spectral and nonlinear optical characteristics of nanocomposites of ZnO–Ag. Chem Phys Lett. 2008;455:265–269. doi: 10.1016/j.cplett.2008.02.097
  • Tintu R, Nampoori VPN, Radhakrishnan P, et al. Nonlinear optical studies on nanocolloidal Ga–Sb–Ge–Se chalcogenide glass. J Appl Phys. 2010;108:073525. doi: 10.1063/1.3481097
  • Tintu R, Nampoori VPN, Radhakrishnan P, et al. Preparation and optical characterization of novel Ge–Se–Sb/PVA composite films for optical limiting application. J Phys D Appl Phys. 2011;44:025101. doi: 10.1088/0022-3727/44/2/025101
  • Quereshi FM, Martin SJ, Long X, et al. Optical limiting properties of a zinc porphyrin polymer and its dimer and monomer model compounds. Chem Phys. 1998;231(1):87–94. doi: 10.1016/S0301-0104(98)00081-0