1,427
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Magnetic properties of GaAs parabolic quantum dot in the presence of donor impurity under the influence of external tilted electric and magnetic fields

ORCID Icon, ORCID Icon & ORCID Icon
Pages 687-695 | Received 02 Mar 2019, Accepted 17 May 2019, Published online: 28 May 2019

References

  • Harrison P. Quantum wells, wires and dots. Chichester: John Wiley & Sons; 2005.
  • Tiwari S, Rana F, Chan K, et al. Single charge and confinement effects in nano-crystal memories. Appl Phys Lett. 1996;69(9):1232–1234. doi: 10.1063/1.117421
  • Schwarz JA, Contescu CI, Putyera K. Dekker encyclopedia of nanoscience and nanotechnology. Vol. 3. Boca Raton (FL): CRC Press; 2004.
  • Bahramiyan H, Khordad R. Effect of various factors on binding energy of pyramid quantum dot: pressure, temperature and impurity position. Opt Quantum Electron. 2014;46(5):719–729. doi: 10.1007/s11082-013-9782-1
  • Xu YB, Hassan SSA, Wong PKJ, et al. Hybrid spintronic structures with magnetic oxides and Heusler alloys. IEEE Trans Magn. 2008;44(11):2959–2965. doi: 10.1109/TMAG.2008.2002188
  • Li S-S, Xia J-B. Binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot: quantum confinement and stark effects. J Appl Phys. 2007;101(9):093716. doi: 10.1063/1.2734097
  • Bose C, Sarkar CK. Effect of a parabolic potential on the impurity binding energy in spherical quantum dots. Phys B Condens Matter. 1998;253(3-4):238–241. doi: 10.1016/S0921-4526(98)00407-4
  • Kırak M, Yılmaz S, Shahin M, et al. The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum. J Appl Phys. 2011;109(9):094309. doi: 10.1063/1.3582137
  • Murillo G, Porras-Montenegro N. Effects of an electric field on the binding energy of a donor impurity in a spherical GaAs quantum dot with parabolic confinement. Phys Stat Solid B. 2000;220(1):187–190. doi: 10.1002/1521-3951(200007)220:1<187::AID-PSSB187>3.0.CO;2-D
  • Zeng Z, Garoufalis CS, Baskoutas S. Combination effects of tilted electric and magnetic fields on donor binding energy in a GaAs/AlGaAs cylindrical quantum. J Phys D Appl Phys. 2012;45(23):235102. doi: 10.1088/0022-3727/45/23/235102
  • Li YX, Liu JJ, Kong XJ. The effect of a spatially dependent effective mass on hydrogenic impurity binding energy in a finite parabolic quantum well with a magnetic field. J Appl Phys. 2000;88(5):2588–2592. doi: 10.1063/1.1286244
  • Wang YJ, Leem YA, McCombe BD, et al. Strong three-level resonant magnetopolaron effect due to the intersubband coupling in heavily modulation-doped GaAs/AlxGa1−xAs single quantum wells at high magnetic fields. Phys Rev B. 2001;64(16):161303. doi: 10.1103/PhysRevB.64.161303
  • Niculescu E, Gearba A, Cone G, et al. Magnetic field dependence of the binding energy of shallow donors in GaAs quantum-well wires. Superlattices Microstruct. 2001;29(5):319–328. doi: 10.1006/spmi.2000.0895
  • Ham H, Spector HN. Photoionization cross section of hydrogenic impurities in cylindrical quantum wires: finite well model. J Appl Phys. 2006;100(2):024304. doi: 10.1063/1.2211311
  • Ham H, Lee CJ, Spector HN. Photoionization cross section of hydrogenic impurities in cylindrical quantum wires: infinite well model. J Appl Phys. 2004;96(1):335–339. doi: 10.1063/1.1759394
  • Aktas S, Boz FK, Dalgic SS. Electric and magnetic field effects on the binding energy of a hydrogenic donor impurity in a coaxial quantum well wire. Phys E Low-Dimensional Syst Nanostruct. 2005;28(1):96–105. doi: 10.1016/j.physe.2005.02.002
  • An XT, Liu JJ. Hydrogenic impurities in parabolic quantum-well wires in a magnetic field. J Appl Phys. 2006;99(12):123713. doi: 10.1063/1.2206415
  • Barati M, Rezaei G, Vahdani MRK. Binding energy of a hydrogenic donor impurity in an ellipsoidal finite-potential quantum dot. Phys Stat Solid B. 2007;244(7):2605–2610. doi: 10.1002/pssb.200642543
  • Li SS, Xia JB. Electronic structure and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAsAlxGa1−x As quantum. J Appl Phys. 2006;100(8):083714. doi: 10.1063/1.2358406
  • Jiang L, Wang H, Wu H, et al. External electric field effect on the hydrogenic donor impurity in zinc-blende GaN/AlGaN cylindrical quantum. J Appl Phys. 2009;105(5):053710. doi: 10.1063/1.3080175
  • Xia C, Zeng Z, Wei S. Electron and impurity states in GaN/AlGaN coupled quantum dots: effects of electric field and hydrostatic pressure. J Appl Phys. 2010;108(5):054307. doi: 10.1063/1.3481437
  • John Peter A. The effect of hydrostatic pressure on binding energy of impurity states in spherical quantum dots. Phys E Low-Dimensional Syst Nanostruct. 2005;28(3):225–229. doi: 10.1016/j.physe.2005.03.018
  • Qu F, Santos Jr DR, Azevedo RB, et al. Tunable magnetic property of lateral quantum dot molecules. J Phys Conf Ser. 2011;334:012064. doi: 10.1088/1742-6596/334/1/012064
  • Ciftja O. Generalized description of few-electron quantum dots at zero and non-zero magnetic fields. Journal of Physics: Condensed Matter. 2007;19(4):046220.
  • Tanaka K. Semiclassical study of the magnetization of a quantum. Ann Phys (N Y). 1998;268(1):31–60. doi: 10.1006/aphy.1998.5824
  • Soylu A. The influence of external fields on the energy of two interacting electrons in a quantum. Ann Phys (N Y). 2012;327(12):3048–3062. doi: 10.1016/j.aop.2012.06.008
  • Karimi MJ, Rezaei G. Effects of external electric and magnetic fields on the linear and nonlinear intersubband optical properties of finite semi-parabolic quantum dots. Phys B Condens Matter. 2011;406(23):4423–4428. doi: 10.1016/j.physb.2011.08.105
  • Wang D, Jin G, Zhang Y, et al. Effect of a tilted electric field on the magnetoexciton ground state in a semiconductor quantum. J Appl Phys. 2009;105(6):063716. doi: 10.1063/1.3088886
  • Shaer A, Elsaid M, Elhasan M. The magnetic properties of a quantum dot in a magnetic field. Turkish J Phys. 2016;40(3):209–218. doi: 10.3906/fiz-1510-4
  • Hwang T-M, Lin W-W, Wang W-C, et al. Numerical simulation of three-dimensional pyramid quantum. J Comput Phys. 2004;196(1):208–232. doi: 10.1016/j.jcp.2003.10.026
  • Johnson HT, Freund LB, Akyuz CD, et al. Finite element analysis of strain effects on electronic and transport properties in quantum dots and wires. J Appl Phys. 1998;84(7):3714–3725. doi: 10.1063/1.368549
  • Boda A, Chatterjee A. Transition energies and magnetic properties of a neutral donor complex in a Gaussian GaAs quantum. Superlattices Microstruct. 2016;97:268–276. doi: 10.1016/j.spmi.2016.06.009
  • Tojo T, Inui M, Ooi R, et al. Effect of isotropy and anisotropy of the confinement potential on the Rashba spin–orbit interaction for an electron in a two-dimensional quantum dot system. Jpn J Appl Phys. 2017;56(7):075201. doi: 10.7567/JJAP.56.075201
  • Sanjeev Kumar D, Mukhopadhyay S, Chatterjee A. Magnetization and susceptibility of a parabolic InAs quantum dot with electron–electron and spin–orbit interactions in the presence of a magnetic field at finite temperature. J Magn Magn Mater. 2016;418:169–174. doi: 10.1016/j.jmmm.2016.02.071
  • Weng-Fang X. A two-electron quantum ring under magnetic fields. Commun Theor Phys. 2008;49:1619–1621. doi: 10.1088/0253-6102/49/6/58
  • Hao J, Liu J-l. A numerical method for exact diagonalization of semiconductor quantum dot model. Comput Phys Commun. 2010;181:937–949. doi: 10.1016/j.cpc.2010.01.006
  • Sharma HK, Boda A, Boyacioglu B, et al. Electronic and magnetic properties of two-electron Gaussian GaAs quantum dot with spin-Zemann term. J Magn Magn Mater. 2019;469:171–177. doi: 10.1016/j.jmmm.2018.07.070
  • Baghdasaryan DA, Hayrapetyan DB, Kazaryan EM, et al. Thermal and magnetic properties of electron gas in toroidal quantum. Phys E. 2018;101:1–4. doi: 10.1016/j.physe.2018.03.009
  • Nammas FS. Thermodynamic properties of two electron quantum dot with harmonic interaction. Physica. 2018;A508:187–198. doi: 10.1016/j.physa.2018.05.116
  • Ghaltaghchyan HT, Kazaryan EM, Sarkisyan A. Diamagnetism in the cylindrical quantum dot with parabolic confinement potential. J Phys Sci. 2016;3:20–24.