2,122
Views
23
CrossRef citations to date
0
Altmetric
Research Articles

High efficiency silicon solar cells with back ZnTe layer hosting IPV effect: a numerical case study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 696-703 | Received 12 Oct 2018, Accepted 17 May 2019, Published online: 31 May 2019

References

  • Yoshikawa K, Yoshida W, Irie T, et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol Energy Mater Sol Cells. 2017;173:37–42. doi:10.1016/j.solmat.2017.06.024
  • Oxford PV press release, Oxford PV sets world record for perovskite solar cell, 2018; https://www.oxfordpv.com/news/oxfordpv-sets-world-record-perovskite-solar-cell.
  • Keevers MJ, Green MA. Efficiency improvements of silicon solar cells by the impurity photovoltaic effect. J Appl Phys. 1994;75:4022. doi: 10.1063/1.356025
  • Khelifi S, Verschraegen J, Burgelman M, et al. Numerical simulation of the impurity photovoltaic effect in silicon solar cells. Renew. Energ. 2008;33:293–298. doi: 10.1016/j.renene.2007.05.027
  • Breitenstein O. Understanding the current-voltage characteristics of industrial crystalline silicon solar cells by considering inhomogeneous current distributions. Opto Electron Rev. 2013;21(3):259–282. doi: 10.2478/s11772-013-0095-5
  • Sahoo HS, Yadav AK, Ray A. Simulation of IPV effect in In-doped c-Si with optimized indium concentration and layer thickness. Phys B. 2011;406:4221–4226. doi: 10.1016/j.physb.2011.07.064
  • Yuan J, Shen H, Zhong F, et al. Impurity photovoltaic effect in silicon solar cells doped with tellurium. J Optoelectron Adv Mater Rapid Commun. 2011;5(8):866–869.
  • Sircar R, Gupta S, Srivastava DP, et al. Study of Impurity Photovoltaic Effect with Different Doping Materials using SCAPS Simulator. Int J Sci Res Pub. 2013;3(7):1–5. ISSN 2250-3153.
  • Macdonald D, McLean K, Deenapanray PNK, et al. Electronically-coupled up-conversion: an alternative approach to impurity photovoltaics in crystalline silicon. Semicond Sci Technol. 2008;23(015001), doi:10.1088/0268-1242/23/1/015001.
  • Matin MA, Aliyu MM, Quadery AH, et al. Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis. Sol Energy Mat Sol Cells. 2010;94:1496–1500. doi: 10.1016/j.solmat.2010.02.042
  • Jeetendra S, Naveen CS, Raghu P, et al. Optimization of Thickness of ZnTe Thin Film as Back Contact for CdTe Thin Film Solar Cells. IJERT. 2014;3(5):431–435. ISSN: 2278-0181.
  • Zhang L, Liu C, Yang Q, et al. Growth and characterization of highly nitrogen doped ZnTe films on GaAs (001) by molecular beam epitaxy. Mater Sci Semicond Process. 2014;29:351–356. doi: 10.1016/j.mssp.2014.06.045
  • Shahriar M, Khan P, Farzana E. Performance Analysis of Impurity Photovoltaic Effect in Solar Cells . IJAPM. 2013;3(1):63–65.
  • Beaucarne G, Brown AS, Keevers MJ, et al. The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells?. Prog Photovolt Res Appl. 2002;10(5):345–353. doi: 10.1002/pip.433
  • Lucovsky G. On the photoionization of deep impurity centers in semiconductors. Solid State Commun. 1965;3:299–302. doi: 10.1016/0038-1098(65)90039-6
  • Burgelman M, Nollet P, Degrave S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films. 2000;361–362:527–532. doi: 10.1016/S0040-6090(99)00825-1
  • Froitzheim A, Stangl R, Elstner L, et al. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan. p. 279–282.
  • Zhu H, Kalkan AK, Hou J, et al. Applications of AMPS-1D for solar cell simulation. AIP Conf Proc. 1999;462:309–314. doi: 10.1063/1.57978
  • ATLAS User’s Manual: Device Simulation Software. Silvaco International, Santa Clara (2015).
  • Martí A, Cuadra L, López N, et al. Intermediate band solar cells: comparison with shockley-read-hall recombination. Semiconductors. 2004;38(8):946–949. doi: 10.1134/1.1787117
  • Sato K, Adachi S. Optical properties of ZnTe. J Appl Phys. 1993;73:926. doi: 10.1063/1.353305
  • Güttler G, Queisser HA. Impurity photovoltaic effect in silicon. Energ Convers. 1970;10:51–55. doi: 10.1016/0013-7480(70)90068-9
  • Dexter DL. Solid state physics, Vol. 6. New York: Academic Press; 1958; p. 363.
  • Sarkar CK. Technology computer aided design: simulation for VLSI MOSFETTaylor & Francis Group; 2013; ISBN: 1351823655, 9781351823654.
  • Deng W, Ye F, Xiong Z, et al. Development of high-efficiency industrial p-type Multi-crystalline PERC solar cells with efficiency greater than 21%. Energy Procedia. 2016;92:721–729. doi: 10.1016/j.egypro.2016.07.050
  • Azzouzi G, Chegaar M. Impurity photovoltaic effect in silicon solar cell doped with sulphur: a numerical simulation. Phys B. 2011;406:1773–1777. doi: 10.1016/j.physb.2011.02.025
  • Schmeits M, Mani AA. Impurity photovoltaic effect inc-Si solar cells. A numerical study. J Appl Phys. 1999;85:2207–2212. doi: 10.1063/1.369528
  • Zaari H, Boujnah M, El-Agdal A, et al. Optical properties of ZnTe doped with transition metals (Ti, Cr and Mn). Opt Quant Electron. 2014;46:75–86. doi: 10.1007/s11082-013-9708-y
  • Jeetendra S, Nagabhushana H, Mrudula K, et al. Concentration Dependent Optical and Structural Properties of Mo doped ZnTe Thin Films Prepared by e-beam Evaporation Method. Int J Electrochem Sci. 2014;9(6):2944–2954.
  • Kiran MSRN, Kshirsagar S, Krishna MG, et al. Structural, optical and nanomechanical properties of (1 1 1) oriented nanocrystalline ZnTe thin films. Eur Phys J Appl Phys. 2010;51:10502. doi: 10.1051/epjap/2010071
  • Pettersson J, Platzer-Björkman C, Zimmermann U, et al. Baseline model of graded-absorber Cu(In,Ga)Se2 solar cells applied to cells with Zn1−xMgxO buffer layers. Thin Solid Films. 2011;519:7476–7480. doi: 10.1016/j.tsf.2010.12.141
  • Ge J, Ling ZP, Wong J, et al. Optimisation of intrinsic a-Si:H passivation layers in crystalline-amorphous Silicon heterojunction solar cells. Energy Procedia. 2012;15:107–117. doi: 10.1016/j.egypro.2012.02.013
  • Wang W, Lin AS, Phillips JD. Intermediate-band photovoltaic solar cell based on ZnTe:O. Appl Phys Lett. 2009;95:011103. doi: 10.1063/1.3166863
  • Khelifi S, Mazari H, Belghachi A, et al. Analysis of intermediate band photovoltaic solar cell based on ZnTe:O. J Nanoelectron Optoelectron. 2015;10:333–337. doi: 10.1166/jno.2015.1770
  • Wang W, Bowen W, Spanninga S, et al. Optical characteristics of ZnTeO thin films Synthesized by Pulsed Laser Deposition and Molecular Beam Epitaxy. J Electron Mat. 2009;38(1). doi: 10.1007/s11664-008-0577-2
  • Montelius L, Grimmeiss HG. The electron capture cross section of Se+in silicon. Semicond Sci Technol. 1988;3:847–852. doi: 10.1088/0268-1242/3/9/004
  • Eck M, Van Pham C, Züfle S, et al. Improved efficiency of bulk heterojunction hybrid solar cells by utilizing CdSe quantum dot–graphene nanocomposites. Phys Chem Chem Phys. 2014;16:12251. doi: 10.1039/C4CP01566E
  • Abazari M, Ahmad FR, Raghavan C, et al. Carrier density in p-type ZnTe with nitrogen and copper doping. Mater Res Soc Symp Proc. 2013;1538:383–389. doi: 10.1557/opl.2013.1010
  • Pak SW, Lee DU, Kim EK. Oxygen incorporation in ZnTe thin films grown by plasma-assisted pulsed laser deposition. Curr Appl Phys. 2014;14:S49–S52. doi: 10.1016/j.cap.2013.11.043
  • Barugkin C, Allen T, Chong TK, et al. Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence. Opt Soc Am. 2015;23(7):A391. doi:10.1364/oe.23.00a391
  • Khosroabadi SHK. Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector. Opt Soc Am. 2014;22(S3):A921. doi:10.1364/OE.22.00A921