1,166
Views
20
CrossRef citations to date
0
Altmetric
Research Articles

The new exact solutions for the deterministic and stochastic (2+1)-dimensional equations in natural sciences

ORCID Icon, ORCID Icon & ORCID Icon
Pages 834-843 | Received 25 Nov 2018, Accepted 02 Jul 2019, Published online: 24 Jul 2019

References

  • Abdelrahman MAE, Kunik M. The interaction of waves for the ultra-relativistic Euler equations. J Math Anal Appl. 2014;409:1140–1158. doi: 10.1016/j.jmaa.2013.07.009
  • Abdelrahman MAE, Kunik M. A new front tracking scheme for the ultra-relativistic Euler equations. J Comput Phys. 2014;275:213–235. doi: 10.1016/j.jcp.2014.06.051
  • Abdelrahman MAE, Kunik M. The ultra-relativistic Euler equations. Math Meth Appl Sci. 2015;38:1247–1264. doi: 10.1002/mma.3141
  • Abdelrahman MAE. Global solutions for the ultra-relativistic Euler equations. Nonlinear Anal. 2017;155:140–162. doi: 10.1016/j.na.2017.01.014
  • Abdelrahman MAE. On the shallow water equations. Z Naturforsch. 2017;72(9a):873–879.
  • Abdelrahman MAE. Numerical investigation of the wave-front tracking algorithm for the full ultra-relativistic Euler equations. Int J Nonlinear Sci Numer Simul. doi: 10.1515/ijnsns-2017-0121.
  • Razborova P, Ahmed B, Biswas A. Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity. Appl Math Inf Sci. 2014;8(2):485–491. doi: 10.12785/amis/080205
  • Biswas A, Mirzazadeh M. Dark optical solitons with power law nonlinearity using G′/G-expansion. Optik. 2014;125:4603–4608. doi: 10.1016/j.ijleo.2014.05.035
  • Younis M, Ali S, Mahmood SA. Solitons for compound KdV Burgers equation with variable coefficients and power law nonlinearity. Nonlinear Dyn. 2015;81:1191–1196. doi: 10.1007/s11071-015-2060-y
  • Bhrawy AH. An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl Math Comput. 2014;247:30–46.
  • Abdelrahman MAE, Sohaly MA. Solitary waves for the modified Korteweg-De Vries equation in deterministic case and random case. J Phys Math. 2017;8(1). doi: 10.4172/2090-0902.1000214.
  • Abdelrahman MAE, Sohaly MA. Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case. Eur Phys J Plus (2017).
  • Abdelrahman MAE, Sohaly MA. The development of the deterministic nonlinear PDEs in particle physics to stochastic case. Results Phys. 2018;9:344–350. doi: 10.1016/j.rinp.2018.02.032
  • Malfliet W. Solitary wave solutions of nonlinear wave equation. Am J Phys. 1992;60:650–654. doi: 10.1119/1.17120
  • Malfliet W, Hereman W. The tanh method: exact solutions of nonlinear evolution and wave equations. Phys Scr. 1996;54:563–568. doi: 10.1088/0031-8949/54/6/003
  • Wazwaz AM. The tanh method for travelling wave solutions of nonlinear equations. Appl Math Comput. 2004;154:714–723.
  • Dai CQ, Zhang JF. Jacobian elliptic function method for nonlinear differential difference equations. Chaos Solutions Fract. 2006;27:1042–1049. doi: 10.1016/j.chaos.2005.04.071
  • Fan E, Zhang J. Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys Lett A. 2002;305:383–392. doi: 10.1016/S0375-9601(02)01516-5
  • Liu S, Fu Z, Liu s, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys Lett A. 2001;289:69–74. doi: 10.1016/S0375-9601(01)00580-1
  • He JH, Wu XH. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals. 2006;30:700–708. doi: 10.1016/j.chaos.2006.03.020
  • Aminikhad H, Moosaei H, Hajipour M. Exact solutions for nonlinear partial differential equations via Exp-function method. Numer Methods Partial Differ Equ. 2009;26:1427–1433.
  • Wazwaz AM. Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method. Comput Math Appl. 2005;50:1685–1696. doi: 10.1016/j.camwa.2005.05.010
  • Wazwaz AM. A sine-cosine method for handling nonlinear wave equations. Math Comput Model. 2004;40:499–508. doi: 10.1016/j.mcm.2003.12.010
  • Yan C. A simple transformation for nonlinear waves. Phys Lett A. 1996;224:77–84. doi: 10.1016/S0375-9601(96)00770-0
  • Fan E, Zhang H. A note on the homogeneous balance method. Phys Lett A. 1998;246:403–406. doi: 10.1016/S0375-9601(98)00547-7
  • Wang ML. Exct solutions for a compound KdV-Burgers equation. Phys Lett A. 1996;213:279–287. doi: 10.1016/0375-9601(96)00103-X
  • Ren YJ, Zhang HQ. A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation. Chaos Solitons Fract. 2006;27:959–979. doi: 10.1016/j.chaos.2005.04.063
  • Zhang JL, Wang ML, Wang YM, et al. The improved F-expansion method and its applications. Phys Lett A. 2006;350:103–109. doi: 10.1016/j.physleta.2005.10.099
  • Fan E. Extended tanh-function method and its applications to nonlinear equations. Phys Lett A. 2000;277:212–218. doi: 10.1016/S0375-9601(00)00725-8
  • Wazwaz AM. The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl Math Comput. 2007;187:1131–1142.
  • Wang ML, Zhang JL, Li XI. The (G′/G)- expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics. Phys Lett A. 2008;372:417–423. doi: 10.1016/j.physleta.2007.07.051
  • Zhang S, Tong JL, Wang W. A generalized (G′/G)- expansion method for the mKdv equation with variable coefficients. Phys Lett A. 2008;372:2254–2257. doi: 10.1016/j.physleta.2007.11.026
  • Ferdous F, Hafez MG, Biswas A, et al. Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp⁡(φ(ξ))-expansion. Optik. 2019;178:439–448. doi: 10.1016/j.ijleo.2018.10.016
  • Ferdous F, Hafez MG. Nonlinear time fractional Korteweg-de Vries equations for the interaction of wave phenomena in fluid-filled elastic tubes. Eur Phys J Plus. 2018;133:384. doi: 10.1140/epjp/i2018-12195-6
  • Ferdous F, Hafez MG. Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems. J Ocean Eng Sci. 2018;3:244–252. doi: 10.1016/j.joes.2018.08.005
  • Hafez MG, Talukder MR, Ali MH. New analytical solutions for propagation of small but finite amplitude ion-acoustic waves in a dense plasma. Waves Random Complex Media. 2016;26(1):68–79. doi: 10.1080/17455030.2015.1111543
  • Hafez MG. Exact solutions to the (3+1)-dimensional coupled Klein-Gordon-Zakharov equation using expexpansion method. Alex Eng J. 2016;55:1635–1645. doi: 10.1016/j.aej.2016.02.010
  • Hafez MG. New travelling wave solutions of the (1+1)-dimensional cubic nonlinear Schrodinger equation using novel (G′/G)-expansion method. Beni-Suef Univ J Basic Appl Sci. 2016;5(2):109–118. doi: 10.1016/j.bjbas.2016.03.003
  • Hafez MG, Sakthivel R, Talukder MR. Some new electrostatic potential functions used to analyze the ion-acoustic waves in a Thomas Fermi plasma with degenerate electrons. Chin J Phys. 2015;53(7):120901-1–120901-13.
  • Hafez MG, Alam MN, Akbar MA. Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J King Saud Univ. 2015;27:105–112. doi: 10.1016/j.jksus.2014.09.001
  • Yaslan HC, Girgin E. New exact solutions for the conformable space-time fractional KdV, CDG, (2+1)-dimensional CBS and (2+1)-dimensional AKNS equations. J Taibah Univ Sci. 2018;12:309–314. doi: 10.1080/16583655.2018.1469283
  • Alam MN, Alam MM. An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules. J Taibah Univ Sci. 2017;11:939–948. doi: 10.1016/j.jtusci.2016.11.004
  • Nuruddeen RI, Nass AM. Exact solitary wave solution for the fractional and classical GEW-burgers equations: an application of kudryashov method. J Taibah Univ Sci. 2018;12:309–314. doi: 10.1080/16583655.2018.1469283
  • Ebrahimi Ghogdia S, Ghomanjani F, Saberi-Nadjafi J. Expansion of the Exp-function method for solving systems of two-dimensional NavierStokes equations. J Taibah Univ Sci. 2015;9:121–125. doi: 10.1016/j.jtusci.2014.07.009
  • Abdelrahman MAE. A note on Riccati-Bernoulli sub-ODE method combined with complex transform method applied to fractional differential equations. Nonlinear Eng Model Appl. (2018). doi: 10.1515/nleng-2017-0145.
  • Hassan SZ, Abdelrahman MAE. Solitary wave solutions for some nonlinear time-fractional partial differential equations. Pramana – J Phys. 2018;91:67. doi:10.1007/s12043-018-1636-8.
  • Yang XF, Deng ZC, Wei Y. A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv Differ Equ. 2015;1:117–133. doi: 10.1186/s13662-015-0452-4
  • El-Tawil MA, Sohaly MA. Mean square numerical methods for initial value random differential equations. Open J Discrete Math. 2011;1.02:66. doi: 10.4236/ojdm.2011.12009
  • El-Tawil MA, Sohaly MA. Mean square convergent finite difference scheme for random first order partial differential equations. The Egyptian Mathematical Society, International Conference on Mathematics. Trends and Development ICMTD12.
  • Navarro-Quiles A, Romero JV, Rosell MD, Sohaly MA. Approximating the solution stochastic process of the random Cauchy one-dimensional heat model. Abs Appl Anal. 2016;2016. Article ID 5391368, 7 pages, 2016. doi:10.1155/2016/5391368.
  • Sohaly MA. Mean square convergent three and five points finite difference scheme for stochastic parabolic partial differential equations. EJMAA. 2014;2(1):164–171.
  • Wang Z, Zhang HQ. Many new kinds exact solutions to (2+1)-dimensional Burgers equation and Klein-Gordon equation used a new method with symbolic computation. Appl Math Comput. 2007;186:693–704.
  • Yusufoglu E. The variational iteration method for studying the Klein-Gordon equation. Appl Math Lett. 2008;21:669–674. doi: 10.1016/j.aml.2007.07.023
  • Wazwaz AM. Exact solutions for the ZK-MEW equation by using the tanh and sine-cosine methods. Int J Comput Math. 2005;82(6):699–708. doi: 10.1080/00207160512331329069
  • Khan K, Akbar MA. Exact Solutions of the (2+1)-dimensional cubic Klein-Gordon Equation and the (3+1)-dimensional Zakharov-Kuznetsov equation using the modified simple equation method. J Assoc Arab Univ Basic Appl Sci. 2014;15:74–81.