977
Views
38
CrossRef citations to date
0
Altmetric
Research Articles

Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell–Eyring non-Newtonian fluid

Pages 858-863 | Received 12 Nov 2018, Accepted 26 Jul 2019, Published online: 08 Aug 2019

References

  • Agbaje TM, Mondal S, Motsa SS, et al. A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat generation and thermal radiation. Alex Eng J. 2017;56(1):81–91. doi: 10.1016/j.aej.2016.09.006
  • Rahimi J, Ganji DD, Khaki M, et al. Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method. Alex Eng J. 2017;56:621–627. doi: 10.1016/j.aej.2016.11.006
  • Hayat T, Qasim M, Abbas Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet. Z Nat A. 2010;65(3):231–239.
  • Parand K, Bahramnezhad A, Farahani H. A numerical method based on rational Gegenbauer functions for solving boundary layer flow of a Powell-Eyring non-Newtonian fluid. Comput Appl Math. 2018:37(5):6053–6075. doi: 10.1007/s40314-018-0679-2
  • Zaman H, Shah MA, Ibrahim M. Unsteady incompressible Couette flow problem for the Eyring-Powell model with porous walls. Am J Comput Math. 2013;3(4):313–325. doi: 10.4236/ajcm.2013.34041
  • Nadeem S, Saleem S. Series solution of unsteady Eyring Powell nanofluid flow on a rotating cone. Indian J Pure Appl Phys. 2015;52(11):725–737.
  • Malik MY, Khan I, Hussain A, et al. Mixed convection flow of MHD Eyring-Powell nano fluid over a stretching sheet: a numerical study. AIP Adv. 2015;5:11.
  • Nadeem S, Haq RU, Khan ZH. Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J Taiwan I Chem Eng. 2014;45(1):121–126. doi: 10.1016/j.jtice.2013.04.006
  • Parand K, Lotfi Y, Rad JA. An accurate numerical analysis of the laminar two-dimensional flow of an incompressible Eyring-Powell fluid over a linear stretching sheet. Eur Phys J Plus. 2017;132(9):397. doi: 10.1140/epjp/i2017-11693-3
  • Steger JL, Warming RF. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J Comput Phys. 1981;40(2):263–293. doi: 10.1016/0021-9991(81)90210-2
  • Hughes TJ, Franca LP, Hulbert GM. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Method Appl Mech. 1989;73(2):173–189. doi: 10.1016/0045-7825(89)90111-4
  • Bhrawy AH, Abdelkawy MA. A fully spectral collocation approximation for multi-dimensional fractional Schrdinger equations. J Comput Phys. 2015;1(294):462–483. doi: 10.1016/j.jcp.2015.03.063
  • Assari P, Adibi H, Dehghan M. A meshless discrete Galerkin(MDG)method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math. 2014;30(267):160–81. doi: 10.1016/j.cam.2014.01.037
  • Azarnavid B, Parand K, Abbasband S. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition. Commun Nonlinear Sci Numer Simul. 2018;59:544–552. doi: 10.1016/j.cnsns.2017.12.002
  • Li X, Wu B. A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions. Appl Math Lett. 2018;86:194–199. doi: 10.1016/j.aml.2018.06.035
  • Akgül A. A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals. 2018;114:478–482. doi: 10.1016/j.chaos.2018.07.032
  • Azarnavid B, Shivanian E, Parand K. Multiplicity results by shooting reproducing kernel Hilbert space method for the catalytic reaction in a flat particle. J Theor Comput Chem. 2018.
  • Akgül EK. A novel method for the space and time fractional Bloch-Torrey equations. Therm Sci. 2018;253–258. doi: 10.2298/TSCI170715293A
  • Ellahi R, Alamri SZ, Basit A, et al. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–482. doi: 10.1080/16583655.2018.1483795
  • Fetecau C, Ellahi R, Khan M, et al. Combine porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate. J Porous Media. 2018;21(7):589–605. doi: 10.1615/JPorMedia.v21.i7.20
  • Ellahi R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model. 2018;37(3):1451–1457. doi: 10.1016/j.apm.2012.04.004
  • Saif RS, Hayat T, Ellahi R, et al. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness. Results Phys. 2017;7:2821–2830. doi: 10.1016/j.rinp.2017.07.062
  • Khan AA, Masooda F, Ellahi R, et al. Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects. J Mol Liq. 2018;258(15):186–195. doi: 10.1016/j.molliq.2018.02.115
  • Zeeshan A, Shehzad N, Ellahi R. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results Phys. 2018;8:502–512. doi: 10.1016/j.rinp.2017.12.024
  • Ellahi R, Zeeshan A, Shehzad N, et al. Structural impact of Kerosene-Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity: application of cooling process. J Mol Liq. 2018;264:607–615. doi: 10.1016/j.molliq.2018.05.103
  • Zeeshan A, Ijaz N, Abbas T, et al. The sustainable characteristic of bio-bi-phase flow of peristaltic transport of MHD Jeffrey fluid in the human body. Sustainability. 2018;10(8):2671. doi: 10.3390/su10082671
  • Alamri SZ, Khan AA, Azeez M, et al. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A. 2019;383(2–3):276–281. doi: 10.1016/j.physleta.2018.10.035
  • Bhatti MM, Abbas T, Rashidi MM, et al. Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy. 2016;18(6):224. doi: 10.3390/e18060224
  • Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. Int J Numer Methods Fluids. 1995;20(8–9):1081–1106. doi: 10.1002/fld.1650200824
  • Wang D, Chen P. Quasi-convex reproducing kernel meshfree method. Comput Mech. 2014;54(3):689–709. doi: 10.1007/s00466-014-1022-4
  • Wang D, Wu J. An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng. 2019;349:628–672. doi: 10.1016/j.cma.2019.02.029