1,746
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Growth and Characterization of Semiorganic Non-linear Optical Material: (((4-aminophenyl)sulphonyl)oxy)zinc(II)chloride Crystal

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 979-992 | Received 21 Nov 2018, Accepted 26 Aug 2019, Published online: 19 Sep 2019

Reference

  • Zyss J, Berthier G. Nonlinear optical properties of organic crystals with hydrogen-bonded molecular units: The case of urea. J Chem Phys. 1982;77:3635. doi: 10.1063/1.444266
  • Wang Y, Eaton DF. Optically non-linear organic molecules cyclodextrin inclusion complexes. Chem Phys Lett. 1985;120(1–5):441–444. doi: 10.1016/0009-2614(85)85637-2
  • Debrus S, Ratajczak H, Venturini J, et al. Novel nonlinear optical crystals of noncentrosymmetric structure based on hydrogen bonds interactions between organic and inorganic molecules. Synth Met. 2002;127:99–104. doi: 10.1016/S0379-6779(01)00607-5
  • Tabei H, Kurihara T, Kaino T. Recrystallization solvent effects on second-order nonlinear optical organic materials. App Phy Lett. 1987;50:1855–1857. doi: 10.1063/1.97716
  • Jonie Varjula A, Vesta C, Justin Raj C, et al. Growth and characterization of a new semi-organic nonlinear optical sodium Paranitro phenolate paranitrophenol dihydrate single crystal. Mater Lett. 2007;61:5053–5055. doi: 10.1016/j.matlet.2007.04.012
  • Rajesh NP, Kannan V, Ashok M, et al. A new nonlinear optical semi-organic material: cadmium thiourea acetate. J Cryst Growth. 2004;262:561–566. doi: 10.1016/j.jcrysgro.2003.10.064
  • Xue D, Zhang S. Effect of hydrogen bonds on optical nonlinearities of inorganic crystals,chemical. Physics Letters. 1999;301(5–6):449–452.
  • Yu D, Xue D, Ratajczak H. Bond-valence parameters for characterizing O– H2O hydrogen bonds in hydrated borates. J Mol Struct. 2006;792:280–285. doi: 10.1016/j.molstruc.2005.11.047
  • Sivavishnu D, Srineevasan R, Johnson J, et al. Optical, band gap energy and mechanical properties of semiorganic nonlinear optical material: 2-aminopyridine potassium dihydrogen orthophosphate lithium chloride (2APKDPL) crystal. Materials Science for Energy Technologies. 2018;2589–2991:30080–6.
  • Jayaprakash P, Peermohamed M, Krishnan P, et al. Growth, spectral, thermal, laser damage threshold, microhardness dielectric, linear and nonlinear optical properties of an organic single crystals: L-Phenylalanine DL –Mandelic acid. Physica B. 2016;503:25–31. doi: 10.1016/j.physb.2016.09.010
  • Schreue J. Crystal structure of methylammonium sulfanilate, (CH3NH3)H2NC6H4SO3. Z KristallogrNCS. 1999;214:317–318.
  • Cai Y, Sun N. Crystal structure of tetrabutylammonium 4-aminobenzenesulfonate 2/3 hydrate, C22H42N2O3S · 2/3 H2O. Z Kristallogr NCS. 2016;231(1):227–829.
  • Sathish kumar K, Rangjith S, Sudhakar S, et al. Crystal structure of piperazine-1,4-diium bis(4-amino-benzene-sulfonate), acta crystal. MN. 2018;E71:01084–01085.
  • Caroline M. L, Mani G, Kumaresan S, et al. Growth, spectral and thermal properties of sulphanilic acid single crystals in the presence of L-proline and L-lysine monohydrochloride dihydrate as dopants, optoelectronics and Advanced materials. Rapid – Communication. 2015;9–10:1239–1244.
  • Mythili P, Kanagasekaran T, Khan SA, et al. Irradiation effects of sodium sulphanilate dihydrate single crystals. Nuclear Instru Phys Research B. 2008;266:1754–1758. doi: 10.1016/j.nimb.2008.01.071
  • Mythili P, Kanagasekaran T, Sharma SN, et al. Growth and characterization of Sodium sulfanilate dihydrate (SSDH) crystals for NLO applications. J Cryst Growth. 2007;306:344–350. doi: 10.1016/j.jcrysgro.2007.05.025
  • Anantharaja M, Gopalakrishnan R. Studies on lithium sulphanilate hydrate (LS) single crystal and its characterization. Int J Chem Tech Research. 2014;6:222–235.
  • Prabhavathi N, Jayanthi L. Influence of K2CO3 on the growth and properties of sulphanilic acid crystal. Chemical Science Review and Letter. 2016;19:290–296.
  • Anantharaja M, Parthasarathy M, Gopalakrishnan R. Comparative studies on growth and characterization of sodium sulphanilate dihydrate single crystals from conventional solution growth and unidirectional growth method of Sankaranarayanan-Ramasamy. Inter J Chem Tech Research. 2013;5:2636–2644.
  • Zahariev A, Kaloyanov N, Girginov C, et al. Synthesis and thermal decomposition of [Bi6O6(OH)2](NH2C6H4SO3)4. Thermochim Acta. 2012;528:85–89. doi: 10.1016/j.tca.2011.11.003
  • Senthil pandian M, Ramasamy P. Sodium sulfanilate dihydrate (SSDH) single crystals grown by conventional slow evaporation and Sankaranarayanan–ramasamy (SR) method and its comparative characterization analysis. Mater Chem Phys. 2012;132:1019–1028. doi: 10.1016/j.matchemphys.2011.12.057
  • Vinoth E, Vetrivel S, Mullai U, et al. Growth, spectral and optical properties of N,N’ -thiocarbonyl bis(4-aminobenesulfonamide) with barium chloride: a semi-organic nonlinear optical crystal. J adv phy. 2018;7:1–8.
  • Rathika Thaya Kumari C, Nageshwari M, Jayaprakash P, et al. Investigation on growth, optical, thermal, mechanical, dielectric, LDT studies of sulphanilic acid monohydrate: A promising third-order nonlinear optical material. J Nonlinear Optical Physics and Materials Containing. 2017;26:1750020–20. doi: 10.1142/S0218863517500205
  • Banu A, Golzar Hossain GM. A new polymorph of sulfanilic acid monohydrate. Acta Cryst. 2006;62:02252–02253.
  • Hempel A, Camerman N, Mastropaolo D, et al. A schiff base formed from sulfanilic acid and dimethylformamide. Acta Cryst. 1999;C55:697–698.
  • Gharde RA, Chunarkar DT. Growth and characterization of sulphanillic acid single crystal from vapor. Inter J Sci and Tech Research. 2013;3:109–111.
  • Liu B, Yan W, Dai Y-c, et al. Crystal structure of bis(4-aminobenzenesulfonato-kappa N)bis(2,2 ‘-biimidazole-kappa N-2,N ‘)copper(II)-dihydrate (1:2), [Cu(C6H6N4)(2)(C6H6O3NS)(2)]center dot 2H(2)O, C24H28CuN10O8S2. Z Kristallogr NCS. 2013;228:229–230.
  • Conner BHO, Maslen EN. The crystal structure of α-sulphanilamide. Acta Cryst. 1965;18:363–366. doi: 10.1107/S0365110X65000828
  • Rae AIM, Maslen EN. The crystal structure of sulphanilic acid monohydrate. Acta Cryst 1962;15:1285–1291. doi: 10.1107/S0365110X62003370
  • Anbusrinivasan P, Pandian GV. Determination of nucleation temperature, meta stable zone width spectral analysis of sulphanilic acid grown from ethanol-water as growth medium. Ultra Chem. 2012;8:83–90.
  • Henchiri R, Ennaceur N, Cordier M, et al. Synthesis, X-Ray crystal structure and highly nonlinear optical properties of inorganic-organic compound: 1,4-Diazbicyclo-octane oxonium trinitrates single crystal. J Phys Chem Solids. 2017;106:58–64. doi: 10.1016/j.jpcs.2017.02.011
  • Nicoud JF, Twieg RJ. Nonlinear optical properties of organic molecules and crystals, Quantum Electronics. Principles and Applications. Vol. 1 (b), Academic 22 Press. Inc, 1987. pp. 227–296.
  • Jin S, Yan P, Wang D, et al. Salt and co-crystal formation from 6-bromobenzo thiazol-2-amine and different carboxylic acid derivatives. J Mol Struct. 2012;1016:55–63. doi: 10.1016/j.molstruc.2012.02.036
  • Zhen Y, Da Z, FuChen Y, et al. Hydrogen-bonding interactions between 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and dimethyl sulphoxide. J Mol Struct. 2018;1164:70–76. doi: 10.1016/j.molstruc.2018.03.042
  • Muthuraja P, Joselin Beaula T, Sethuram M, et al. Hydrogen bonding interactions on 1H-1,2,3-triazole based crystals: Featuring experimental and theoretical analysis. Curr Appl Phys. 2018;18:774–784. doi: 10.1016/j.cap.2018.03.005
  • Arjunan V, Mariusz K, Marchewka K, et al. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite. Spectrochemica Acta Part A: Mol Biomol Spectrosc. 2012;96:744–758. doi: 10.1016/j.saa.2012.07.054
  • Murugesan A, Meenarathi B, Palanikumar S, et al. Synthesis characterization and applications of poly(sulphanilic acid) based tri-block copolymer. Adv Polym Technol. 2016;35:21522–21531. doi: 10.1002/adv.21522
  • Vinoth E, Vetrivel S, Suresh T, et al. A new class semi-organic nonlinear optical materials: mono(4-sulfo benzene aminium) tri nickel(II) bis(dihydrogen phosphate) for photonic applications. Mater Sci Energy Technol. 2019;2:234–245.
  • Vetrivel S, Suresh T, Gopinath S, et al. A New metal-organic nonlinear optical material: L-asparagine indium chloride (LAIn) for photonics application. Chin J Phys. 2018;56:2773–2781. doi: 10.1016/j.cjph.2018.10.007
  • Liu JN, Wu BW, Zhang B, et al. Synthesis and characterization of metal complexes of Cu(II), Ni(II), Zn(II), Co(II), Mn(II) and Cd(II) with tetradentate Schiff bases. Turk J Chem. 2006;30:41–48.
  • Kumari L, Li WZ. Synthesis, structure and optical properties of zinc oxide hexagonal microprisms. Cryst Res Technol. 2010;45:311–315. doi: 10.1002/crat.200900600
  • Srinivasa Rao N, Rao MVB. Structural and optical investigation of ZnO Nanopowders synthesized from zinc chloride and zinc Nitrate. Am J Mater Sci. 2015;5(3):66–68.
  • Balakrishnan T, Ramamurthi K. Growth, structural, optical, thermal and mechanical properties of glycine zinc chloride, single crystal. Mater Lett. 2008;62:65–68. doi: 10.1016/j.matlet.2007.04.072
  • Barfeie H, Grivani G, Eigner V, et al. Copper(II), nickel(II), zinc(II) and vanadium(IV) Schiff base complexes: Synthesis, characterization, crystal structure determination, and thermal studies. Polyhedron. 2018;146:19–25. doi: 10.1016/j.poly.2018.02.012
  • Kumar H, Rani R. Structural and optical characterization of ZnO Nanoparticles synthesized by Microemulsion Route. Int Lett Chem, Phys Astron. 2013;19:26–36.
  • Sinha N, Bhandari S, Yadav H, et al. Performance of crystal violet doped triglycine sulfate single crystals for optical and communication applications. CrystEngComm. 2015;17:5757–5767. doi: 10.1039/C5CE00703H
  • Caroline M. L, Sankar R, Indirani RM, et al. Growth, optical, thermal and dielectric studies of an amino acid organic nonlinear optical material: l-Alanine. Mater Chem Phys. 2009;114:490–494. doi: 10.1016/j.matchemphys.2008.09.070
  • Ghazaryan VV, Fleck M, Petroson AM. Crystal Structures and Vibrational Spectra of Novel Compounds with Dimeric Glycine Glycinium Cations. J Mol.struct. 2010;977:117–129. doi: 10.1016/j.molstruc.2010.05.022
  • Senthil S, Pari S, Sagayaraj P, et al. Studies on the electrical, linear and nonlinear optical properties of meta nitroaniline, an efficient NLO crystal. Physica B; 2009;404:1655–1660. doi: 10.1016/j.physb.2009.01.042
  • Desai CC, Rai JL. Microhardness studies of SnI2 and SnI4 single crystals. BullMater sci 1983;5:453–457.
  • Meyer E. Contribution of the knowledge of hardness and hardness testing. Z Ver Deut Ing 1908;52:645–835.
  • Xiantao Jiang, Liangjing Zhang, Shunxiang Liu. 2018. Adv. Optical Mater. 16 (2018) 1800561-1800571.
  • Onitsch EM. The present status of testing the hardness of materials. Mikroskopie. 1956;95:12–14.
  • Durairaj N, Kalainathan S, Krishnaiah MV. Investigation on uniderctional growth of 1,3,5–Triphenylbenzene by sankaranarayanan-Ramasamy method and its characterization of lifetime, thermal analysis, hardness and etching studies. Mat Chem Phys. 2016;181:529–537. doi: 10.1016/j.matchemphys.2016.06.090
  • Pan JS, Zhang XW. Structure and dielectric behavior of Pb (Mg1/3Nb2/3)O3 –Pb (Ni1/3Nb2/3) O3–Pb (Zn1/3Nb2/3) O3–PbTiO3 ferroelectric ceramics near the morphotropic phase boundary. Acta Mat. 2006;54(5):1343–1348. doi: 10.1016/j.actamat.2005.11.003
  • Surekha R, Gunaseelan R, Sagayaraj P, et al. L-Phenylalanine L-Phenylalaninium bromide a new non linear optical materials RSC. Cryst Engg Comm. 2014;16:7979. doi: 10.1039/C4CE00718B
  • Jiang X, Zhang L, Liu S, et al. Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. AdvOptical Mater. 2018;6:1800561–1800571.
  • Hanumantharao R, Kalainathan S, Bhagavannarayana G, et al. An extensive investigation on nucleation, growth parameters, crystalline perfection, spectroscopy, thermal, optical, microhardness,dielectric and SHG studies on potential NLO crystal-ammonium hydrogen L-tartarte. Spectrochim Acta A: Mol Biomol Spectrosc. 2013;103:388–399. doi: 10.1016/j.saa.2012.10.044
  • Srineevasan R, Rajasekaran R. Growth and optical studies of 2-aminopyridine bis thiourea zinc sulphate (2-APTZS) single crystals for NLO applications. J Mol Struct. 2013;1048:238–243. doi: 10.1016/j.molstruc.2013.05.052
  • Krishnakumar V, Nagalakshmi R. Crystal growth and vibrational spectroscopic studies of the semiorganic non-linear optical crystal-bisthiourea zinc chloride. Spectrochim Acta, Part A. 2005;61:499–507. doi: 10.1016/j.saa.2004.04.014
  • Kumar S, Sinha N, Yadav H, et al. Growth, structural, dielectric, ferroelectric and mechanical properties of L-Prolinium tartarate single crystal. J Mater Sci 2016;51:7614–7623. doi: 10.1007/s10853-016-0040-3
  • Hierle R, Badamn R, Zyss J. Growth and characterization of a New material for nonlinear Optics: Methyl-3-nitro-4-pyridine-1-oxide (POM). Cryst Growth. 1984;69:545–554. doi: 10.1016/0022-0248(84)90366-X
  • Vijayan R, Rameshbabu R, Gopalakrishnan R, et al. Growth and characterization of benzimidazole single crystals: a nonlinear optical material. Cryst Growth. 2004;262:490–498. doi: 10.1016/j.jcrysgro.2003.08.082