1,616
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, spectroscopic characterization and DNA binding studies of Cu(II) complex of Schiff base containing benzothiazole moiety

ORCID Icon, ORCID Icon &
Pages 1050-1059 | Received 29 May 2018, Accepted 07 Oct 2019, Published online: 25 Oct 2019

References

  • Mendu P, Pragathi J, Anupama B, et al. Synthesis, spectral characterization, molecular modeling, and antimicrobial studies of Cu (II), Ni (II), Co (II), Mn (II), and Zn (II) complexes of ONO Schiff base. J Chem. 2012;9(4):2145–2154.
  • Tyagi M, Chandra S, Tyagi P, et al. Synthesis, characterization and anti-fungal evaluation of Ni (II) and Cu (II) complexes with a derivative of 4-aminoantipyrine. J Taibah Univ Sci. 2017;11(1):110–120.
  • Alaghaz AN, Bayoumi HA, Ammar YA, et al. Synthesis, characterization, and antipathogenic studies of some transition metal complexes with N, O-chelating Schiff’s base ligand incorporating azo and sulfonamide Moieties. J Mol Struct. 2013;1035:383–399.
  • Pramanik HA, Paul PC, Mondal P, et al. Mixed ligand complexes of cobalt (III) and iron (III) containing N2O2-chelating Schiff base: Synthesis, characterisation, antimicrobial activity, antioxidant and DFT study. J Mol Struct. 2015;1100:496–505.
  • Amnerkar ND, Bhongade BA, Bhusari KP. Synthesis and biological evaluation of some 4-(6-substituted-1, 3-benzothiazol-2-yl) amino-1, 3-thiazole-2-amines and their Schiff bases. Arab J Chem. 2015;8(4):545–552.
  • Görgün K, Sakarya HC, Özkütük M. The synthesis, characterization, acid dissociation, and theoretical calculation of several novel Benzothiazole Schiff base derivatives. J Chem Eng Data. 2015;60(3):594–601.
  • Argyropoulou I, Geronikaki A, Vicini P, et al. Synthesis and biological evaluation of sulfonamide thiazole and benzothiazole derivatives as antimicrobial agents. Arkivoc. 2009;6:89–102.
  • Jia Y, Li J. Molecular assembly of Schiff base interactions: construction and application. Chem Rev. 2014;115(3):1597–1621.
  • Hossain MS, Roy PK, Zakaria CM, et al. Selected Schiff base coordination complexes and their microbial application: a review. IJCS. 2018;6(1):19–31.
  • Yoshida M, Hayakawa I, Hayashi N, et al. Synthesis and biological evaluation of benzothiazole derivatives as potent antitumor agents. Bioorg Med Chem Lett. 2005;15(14):3328–3332.
  • Thakkar SS, Thakor P, Ray A, et al. Benzothiazole analogues: synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg Med Chem. 2017;25(20):5396–5406.
  • Rouf A, Tanyeli C. Bioactive thiazole and benzothiazole derivatives. Eur J Med Chem. 2015;97:911–927.
  • Boulsourani Z, Katsamakas S, Geromichalos GD, et al. Synthesis, structure elucidation and biological evaluation of triple bridged dinuclear copper (II) complexes as anticancer and antioxidant/anti-inflammatory agents. Mater Sci Eng C. 2017;76:1026–1040.
  • Ott I. Medicinal chemistry of metal N-Heterocyclic Carbene (NHC) complexes. Inorg Organomet Transition Met Complexes Biol Mol Living Cells. 2017(Academic Press):147–179.
  • Ulusoy M, Karabıyık H, Kılınçarslan R, et al. Co (II) and Cu (II) Schiff base complexes of bis (N-(4-diethylamino-2-methylphenyl)-3, 5-di-tert-butylsalicylaldimine): electrochemical and X-ray structural study. Struct Chem. 2008;19(5):749–755.
  • Patra AK, Dhar S, Nethaji M, et al. Metal-assisted red light-induced DNA cleavage by ternary L-methionine copper (II) complexes of planar heterocyclic bases. Dalton Trans. 2005;5:896–902.
  • Abdel-Rahman LH, Abu-Dief AM, El-Khatib RM, et al. Some new nano-sized Fe (II), Cd (II) and Zn (II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg Chem. 2016;69:140–152.
  • Etaiw SE, El-Aziz DM, El-Zaher EH, et al. Synthesis, spectral, antimicrobial and antitumor assessment of Schiff base derived from 2-aminobenzothiazole and its transition metal complexes. Spectrochim Acta A. 2011;79(5):1331–1337.
  • Gautam S, Chandra S, Rajor H, et al. Structural designing, spectral and computational studies of bioactive Schiff’s base ligand and its transition metal complexes. Appl Organometal Chem. 2018;32(1):e3915.
  • Chandra S, Sharma SD. Chromium (III), manganese (II), cobalt (II), nickel (II), copper (II) and palladium (II) complexes of a 12-membered tetraaza [N 4] macrocyclic ligand. Transit Metal Chem. 2002;27(7):732–735.
  • Mahmoud WH, Deghadi RG, Mohamed GG. Preparation, geometric structure, molecular docking thermal and spectroscopic characterization of novel Schiff base ligand and its metal chelates. J Therm Anal Calorim. 2017;127(3):2149–2171.
  • Narang KK, Pandey JP, Singh VP. Synthesis, characterization and physicochemical studies of some copper (II) tetrathiocyanato dithallate (I) complexes with hydrazides and hydrazones. Polyhedron. 1994;13(4):529–538.
  • Hathaway BJ, Tomlinson AA. Copper (II) ammonia complexes. Coord Chem Rev. 1970;5(1):1–43.
  • Ekennia AC, Osowole AA, Olasunkanmi LO, et al. Synthesis, characterization, DFT calculations and molecular docking studies of metal (II) complexes. J Mol Struct. 2017;1150:279–292.
  • Palermo G, Magistrato A, Riedel T, et al. Fighting cancer with transition metal complexes: from naked DNA to protein and chromatin targeting strategies. Chem Med Chem. 2016 Jun 20;11(12):1199–1210.
  • Icsel C, Yilmaz VT, Kaya Y, et al. New Palladium (II) and platinum (II) 5, 5-diethylbarbiturate complexes with 2-phenylpyridine, 2, 2′-bipyridine and 2, 2′-dipyridylamine: Synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity. Dalton Trans. 2015;44(15):6880–6895.
  • e Iram N, Khan MS, Jolly R, et al. Interaction mode of polycarbazole–titanium dioxide nanocomposite with DNA: molecular docking simulation and in-vitro antimicrobial study. J Photochem Photobiol, B. 2015 Dec 1;153:20–32.
  • Thulasiram B, Kumar YP, Aerva RR, et al. Correlation between molecular modelling and spectroscopic techniques in investigation with DNA binding interaction of ruthenium (II) complexes. J Fluoresc. 2017 Mar 1;27(2):587–594.
  • Chaurasia M, Tomar D, Chandra S. Synthesis, spectral characterization, and DNA binding studies of Co (II), Ni (II), Cu (II) and Zn (II) complexes of Schiff base 2-((1H-1, 2, 4-triazol-3-ylimino) methyl)-5-methoxyphenol. J Mol Struct. 2019;1179:431–442.
  • Karaca Ö, Meier-Menches SM, Casini A, et al. On the binding modes of metal NHC complexes with DNA secondary structures: implications for therapy and imaging. Chem Comm. 2017;53(59):8249–8260.
  • Tian Z, Wang Z, Han X, et al. Study on the interaction between cannabinol and DNA using acridine orange as a fluorescence probe. J Mol Recognit. 2018 Feb;31(2). doi: 10.1002/jmr.2682
  • He D, Wang L, Wang L, et al. Spectroscopic studies on the interactions between novel bisnaphthalimide derivatives and calf thymus DNA. J Photochem Photobiol B. 2017 Jan 1;166:333–340.
  • Shi JH, Lou YY, Zhou KL, et al. Probing the behavior of calf thymus DNA upon binding to a carboxamide fungicide boscalid: insights from spectroscopic and molecular docking approaches. J Biomol Struct Dyn. 2018 Jul 27;36(10):2738–2745.
  • Hazra S, Paul A, Sharma G, et al. Sulfonated Schiff base Sn (IV) complexes as potential anticancer agents. J Inorg Biochem. 2016 Sep 30;162:83–95.
  • Long EC, Barton JK. On demonstrating DNA intercalation. Acc Chem Res. 1990 Sep 1;23(9):271–273.
  • Kundu P, Chattopadhyay N. Interaction of a bioactive pyrazole derivative with calf thymus DNA: deciphering the mode of binding by multi-spectroscopic and molecular docking investigations. J Photochem Photobiol B. 2017;173:485–492.
  • Marouzi S, Rad AS, Beigoli S, et al. Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: spectroscopic and molecular modeling approaches. Int J Biol Macromol. 2017;97:688–699.
  • Yang CZ, Liang CY, Zhang D, et al. Deciphering the interaction of methotrexate with DNA: spectroscopic and molecular docking study. J Mol Liq. 2017;248:1–6.
  • Sarwar T, Ishqi HM, Rehman SU, et al. Caffeic acid binds to the minor groove of calf thymus DNA: a multi-spectroscopic, thermodynamics and molecular modelling study. Int J Biol Macromol. 2017;98:319–328.
  • Silva MM, Nascimento EO, Júnior EF, et al. Interaction between bioactive compound 11a-N-tosyl-5-deoxi-pterocarpan (LQB-223) and Calf thymus DNA: spectroscopic approach, electrophoresis and theoretical studies. Int J Biol Macromol. 2017;96:223–233.
  • Asadi Z, Nasrollahi N. The effect of metal and substituent on DNA binding, cleavage activity, and cytotoxicity of new synthesized Schiff base ligands and Zn (II) complex. J Mol Struct. 2017;1147:582–593.
  • Scaria PV, Shafer RH. Binding of ethidium bromide to a DNA triple helix. Evidence for intercalation. J Biol Chem. 1991;266(9):5417–5423.
  • Qais FA, Ahmad I. In vitro interaction of cefotaxime with calf thymus DNA: Insights from spectroscopic, calorimetric and molecular modelling studies. J Pharm Biomed Anal. 2018;149:193–205.
  • Jalali F, Dorraji PS. Interaction of anthelmintic drug (thiabendazole) with DNA: spectroscopic and molecular modeling studies. Arab. J Chem. 2017;10:S3947–S3954.
  • Qais FA, Abdullah KM, Alam MM, et al. Interaction of capsaicin with calf thymus DNA: a multi-spectroscopic and molecular modelling study. Int J Biol Macromol. 2017;97:392–402.
  • Afrin S, Rahman Y, Sarwar T, et al. Molecular spectroscopic and thermodynamic studies on the interaction of anti-platelet drug ticlopidine with calf thymus DNA. Spectrochim Acta A. 2017;186:66–75.
  • Shahraki S, Heidari A, Mirzaei HR, et al. Synthesis, characterization, cytotoxicity, DNA binding and computational studies of an anionic palladium (II) complex derived from 8-hydroxyquinoline and 1, 1-cyclobutanedicarboxylate. J Iran Chem Soc. 2018;15(3):697–709.