6,796
Views
75
CrossRef citations to date
0
Altmetric
Research Articles

Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study

ORCID Icon & ORCID Icon
Pages 1108-1118 | Received 26 Dec 2018, Accepted 16 Sep 2019, Published online: 07 Nov 2019

References

  • Zollinger H. Color chemistry: syntheses, properties and applications of organic dyes and pigments. Weinheim: VCH; 1991.
  • Motahari F, Mozdianfard MR, Soofivand F, et al. NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 2014;4(53):27654–27660. doi: 10.1039/c4ra02697g
  • Lin SH, Peng CF. Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge. Water Res. 1996;30(3):587–592. doi: 10.1016/0043-1354(95)00210-3
  • Din MI, Nabi AG, Rani A, et al. Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: catalytic and antimicrobial potentials. Environ Nanotechnol Monit Manage. 2018;9:29–36.
  • Ahmed S, Ahmad M, Swami BL, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28. doi: 10.1016/j.jare.2015.02.007
  • Khan MSJ, Kamal T, Ali F, et al. Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Int J Biol Macromol. 2019;132:772–783. doi: 10.1016/j.ijbiomac.2019.03.205
  • Ali F, Khan SB, Kamal T, et al. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr Polym. 2018;192:217–230. doi: 10.1016/j.carbpol.2018.03.029
  • Ali N, Awais, Kamal T, et al. Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int J Biol Macromol. 2018;111:832–838. doi: 10.1016/j.ijbiomac.2018.01.092
  • Haider A, Haider S, Kang I-K, et al. A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. Int J Biol Macromol. 2018;108:455–461. doi: 10.1016/j.ijbiomac.2017.12.022
  • Kamal T, Khan SB, Haider S, et al. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles. Int J Biol Macromol. 2017;104:56–62. doi: 10.1016/j.ijbiomac.2017.05.157
  • Kreyling WG, Semmler-Behnke M, Chaudhry Q. A complementary definition of nanomaterial. Nano Today. 2010;5(3):165–168. doi: 10.1016/j.nantod.2010.03.004
  • Maniammal K, Madhu G, Biju V. Nanostructured mesoporous NiO as an efficient photocatalyst for degradation of methylene blue: structure, properties and performance. Nano-Structures Nano-Objects. 2018;16:266–275. doi: 10.1016/j.nanoso.2018.07.007
  • Wang Z, Liu Y, Huang B, et al. Progress on extending the light absorption spectra of photocatalysts. Phys Chem Chem Phys. 2014;16(7):2758–2774. doi: 10.1039/c3cp53817f
  • Houas A, Lachheb H, Ksibi M, et al. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B. 2001;31(2):145–157. doi: 10.1016/S0926-3373(00)00276-9
  • Zhang H, Chen G, Bahnemann DW. Photoelectrocatalytic materials for environmental applications. J Mater Chem. 2009;19(29):5089–5121. doi: 10.1039/b821991e
  • Ansari SA, Khan MM, Kalathil S, et al. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale. 2013;5(19):9238–9246. doi: 10.1039/c3nr02678g
  • Venkata Subba Rao K, Rachel A, Subrahmanyam M, et al. Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl Catal B. 2003;46(1):77–85. doi: 10.1016/S0926-3373(03)00199-1
  • Pillai SC, Periyat P, George R, et al. Synthesis of high-temperature stable anatase TiO2 photocatalyst. J Phys Chem C. 2007;111(4):1605–1611. doi: 10.1021/jp065933h
  • Lang X, Li-Ping J, Jun-Jie Z. Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures. Nanotechnology. 2009;20(4):045605. doi: 10.1088/0957-4484/20/4/045605
  • Wang C, Wang X, Xu B-Q, et al. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. J Photochem Photobiol A. 2004;168(1):47–52. doi: 10.1016/j.jphotochem.2004.05.014
  • Kaizra S, Louafi Y, Bellal B, et al. Electrochemical growth of tin(II) oxide films: application in photocatalytic degradation of methylene blue. Mater Sci Semicond Process. 2015;30:554–560. doi: 10.1016/j.mssp.2014.10.045
  • Khan FU, Asimullah, Khan SB, et al. Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. Int J Biol Macromol. 2017;102:868–877. doi: 10.1016/j.ijbiomac.2017.04.062
  • Kamal T, Ul-Islam M, Khan SB, et al. Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. Int J Biol Macromol. 2015;81:584–590. doi: 10.1016/j.ijbiomac.2015.08.060
  • Ali F, Khan SB, Kamal T, et al. Chitosan coated cotton cloth supported zero-valent nanoparticles: simple but economically viable, efficient and easily retrievable catalysts. Sci Rep. 2017;7(1):16957. doi: 10.1038/s41598-017-16815-2
  • Kamal T, Ahmad I, Khan SB, et al. Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. Carbohydr Polym. 2017;157:294–302. doi: 10.1016/j.carbpol.2016.09.078
  • Kamal T, Anwar Y, Khan SB, et al. Dye adsorption and bactericidal properties of TiO2/chitosan coating layer. Carbohydr Polym. 2016;148:153–160. doi: 10.1016/j.carbpol.2016.04.042
  • Ali F, Khan SB, Kamal T, et al. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci Rep. 2018;8(1):6260. doi: 10.1038/s41598-018-24311-4
  • Kamal T, Khan SB, Asiri AM. Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose. 2016;23(3):1911–1923. doi: 10.1007/s10570-016-0919-9
  • Singh S, Joshi M, Panthari P, et al. Citrulline rich structurally stable zinc oxide nanostructures for superior photo catalytic and optoelectronic applications: a green synthesis approach. Nano-Structures Nano-Objects. 2017;11:1–6. doi: 10.1016/j.nanoso.2017.05.006
  • Iole V, Nadia B, Maria Vittoria R, et al. Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs. Mater Res Express. 2014;1(1):015040. doi: 10.1088/2053-1591/1/1/015040
  • Min S, Wang F, Jin Z, et al. Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation. Superlattices Microstruct. 2014;74:294–307. doi: 10.1016/j.spmi.2014.07.003
  • Hu W, Chu D, Wang L, et al. Ultrasound-assisted synthesis of hexagonal cone-like Cu2O architectures with enhanced photocatalytic activity. Nano-Structures Nano-Objects. 2017;12:220–228. doi: 10.1016/j.nanoso.2017.09.018
  • Li J, Liu Z, Wang D, et al. Visible-light responsive carbon–anatase–hematite core–shell microspheres for methylene blue photodegradation. Mater Sci Semicond Process. 2014;27:950–957. doi: 10.1016/j.mssp.2014.08.038
  • Qing Z, Haixia L, Huali L, et al. Solvothermal synthesis and photocatalytic properties of NiO ultrathin nanosheets with porous structure. Appl Surf Sci. 2015;328:525–530. doi: 10.1016/j.apsusc.2014.12.077
  • Anandan K, Rajendran V. Effects of Mn on the magnetic and optical properties and photocatalytic activities of NiO nanoparticles synthesized via the simple precipitation process. Mater Sci Eng B. 2015;199:48–56. doi: 10.1016/j.mseb.2015.04.015
  • Wang Y, Zhang F, Wei L, et al. Facet-dependent photocatalytic performance of NiO oriented thin films prepared by pulsed laser deposition. Phys B. 2015;457:194–197. doi: 10.1016/j.physb.2014.10.014
  • Rakshit S, Ghosh S, Chall S, et al. Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: a cost effective and eco friendly approach. RSC Adv. 2013;3(42):19348–19356. doi: 10.1039/c3ra42628a
  • Feng Y, Liu L, Zhang J, et al. Photoactive antimicrobial nanomaterials. J Mater Chem B. 2017;5(44):8631–8652. doi: 10.1039/C7TB01860F
  • Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents. 2017;49(2):137–152. doi: 10.1016/j.ijantimicag.2016.11.011
  • Fazlali F, Mahjoub AR, Abazari R. A new route for synthesis of spherical NiO nanoparticles via emulsion nano-reactors with enhanced photocatalytic activity. Solid State Sci. 2015;48:263–269. doi: 10.1016/j.solidstatesciences.2015.08.022
  • Behnajady MA, Bimeghdar S. Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr(VI). Chem Eng J. 2014;239:105–113. doi: 10.1016/j.cej.2013.10.102
  • Huang J, Zhu N, Yang T, et al. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens Bioelectron. 2015;72:332–339. doi: 10.1016/j.bios.2015.05.035
  • Ren L, Zeng Y-P, Jiang D. The improved photocatalytic properties of P-type NiO loaded porous TiO2 sheets prepared via freeze tape-casting. Solid State Sci. 2010;12(1):138–143. doi: 10.1016/j.solidstatesciences.2009.09.021
  • Davar F, Fereshteh Z, Salavati-Niasari M. Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J Alloys Compd. 2009;476(1):797–801. doi: 10.1016/j.jallcom.2008.09.121
  • Song X, Gao L. Facile synthesis of polycrystalline NiO nanorods assisted by microwave heating. J Am Ceram Soc. 2008;91(10):3465–3468. doi: 10.1111/j.1551-2916.2008.02667.x
  • Li Q, Wang L-S, Hu B-Y, et al. Preparation and characterization of NiO nanoparticles through calcination of malate gel. Mater Lett. 2007;61(8):1615–1618. doi: 10.1016/j.matlet.2006.07.113
  • Li J, Yan R, Xiao B, et al. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy Fuels. 2008;22(1):16–23. doi: 10.1021/ef700283j
  • Wang W-N, Itoh Y, Lenggoro IW, et al. Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis. Mater Sci Eng B. 2004;111(1):69–76. doi: 10.1016/j.mseb.2004.03.024
  • Wei Z, Xia T, Bai L, et al. Efficient preparation for Ni nanopowders by anodic arc plasma. Mater Lett. 2006;60(6):766–770. doi: 10.1016/j.matlet.2005.10.008
  • Chakrabarty S, Chatterjee K. Synthesis and characterization of nano-dimensional nickelous oxide (NiO) semiconductor. J Phys Sci. 2009;13:245–250.
  • Khairnar SD, Patil MR, Shrivastava VS. Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of Congo red and methylene blue. Iranian J Catal. 2018;8(2):143–150.
  • Patil SB, Ravishankar T, Lingaraju K, et al. Multiple applications of combustion derived nickel oxide nanoparticles. J Mater Sci Mater Electron. 2018;29(1):277–287. doi: 10.1007/s10854-017-7914-2
  • Jayakumar G, Albert Irudayaraj A, Dhayal Raj A. Photocatalytic degradation of methylene blue by nickel oxide nanoparticles. Mater Today Proc. 2017;4(11, Part 3):11690–11695. doi: 10.1016/j.matpr.2017.09.083
  • Wongsaprom K, Maensiri S. Synthesis and room temperature magnetic behavior of nickel oxide nanocrystallites. Ciang Mai J Sci. 2013;40(1):99–108.
  • Nezamzadeh-Ejhieh A, Bahrami M. Investigation of the photocatalytic activity of supported ZnO–TiO2 on clinoptilolite nano-particles towards photodegradation of wastewater-contained phenol. Desalin Water Treat. 2015;55(4):1096–1104. doi: 10.1080/19443994.2014.922443
  • Akpan UG, Hameed BH. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater. 2009;170(2):520–529. doi: 10.1016/j.jhazmat.2009.05.039
  • Wang C-C, Lee C-K, Lyu M-D, et al. Photocatalytic degradation of C.I. basic violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes Pigm. 2008;76(3):817–824. doi: 10.1016/j.dyepig.2007.02.004
  • Marathe YV, Ramanna MMV, Shrivastava VS. Synthesis and characterization of nanocrystalline CdS thin films grown by chemical bath deposition at different molarities for removal of methylene blue. Desalin Water Treat. 2013;51(28-30):5813–5820. doi: 10.1080/19443994.2013.769720
  • Patil MR, Khairnar SD, Shrivastava VS. Synthesis, characterisation of polyaniline–Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye. Appl Nanosci. 2016;6(4):495–502. doi: 10.1007/s13204-015-0465-z
  • Jorgensen JH. Susceptibility test methods: dilution and disk diffusion methods. In: Murray PR, Baron EJ, editors. Manual of clinical microbiology. Vol. 2. Washington (DC): ASM Press; 2007. p. 1152–1173.
  • Ingroff E, Pfaller MA. Susceptibility test methods: yeasts and filamentous fungi. In: Murray PR, Baron EJ, editors. Manual of clinical microbiology. Vol. 2. Washington (DC): ASM Press; 2007. p. 1972–1986.