977
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Effect of weight percentage of B4C reinforcement on physical and mechanical properties of polyamide 6/polystyrene composites

ORCID Icon & ORCID Icon
Pages 131-138 | Received 08 Aug 2019, Accepted 25 Dec 2019, Published online: 07 Jan 2020

References

  • Elwy A, Badawy MM, Nasr GM. Electrical properties and penetration rate of solvent into irradiated LDPE/SBR conductive blend. Polym Degrad Stab. 1996;53:289–294. doi: 10.1016/0141-3910(96)00090-0
  • Nasr GM, Osman HM, Omar MM, et al. Thermal and dielectric properties of PVC/PMMA loaded conductive PPY composites. Life Sci J. 2014;11(4):127–134.
  • Nasr GM, Amin M, Shaker HM. Mechanical properties of natural rubber nano composites. Int J Acad Res. 2014;6.
  • Thevenot F. Boron carbide—a comprehensive review. J Eur Ceram Soc. 1990;6(4):205–225. doi: 10.1016/0955-2219(90)90048-K
  • Mondal S, Banthia AK. Low-temperature synthetic route for boron carbide. J Eur Ceram Soc. 2005;25(2-3):287–291. doi: 10.1016/j.jeurceramsoc.2004.08.011
  • Kaloshkin SD, Tcherdyntsev VV, Gorshenkov MV, et al. Radiation-protective polymer-matrix nanostructured composites. J Alloys Compd. 2012;536:S522–S526. doi: 10.1016/j.jallcom.2012.01.061
  • Boundy RH, Boyer RF. Styrene: its polymers, copolymers, and derivatives. No. 115. New York: Reinhold; 1952.
  • Craver C, Carraher C. Applied polymer science: 21st century. UK: Elsevier; 2000.
  • Peng J, Zhang X, Qiao J, et al. Radiation preparation of ultrafine carboxylated styrene-butadiene rubber powders and application for nylon 6 as an impact modifier. J Appl Polym Sci. 2002;86:3040–3046. doi: 10.1002/app.11323
  • Auradi V, Rajesh GL, Kori SA. Processing of B4C particulate reinforced 6061aluminum matrix composites by melt stirring involving two-step addition. Proc Mater Sci. 2014;6:1068–1076. doi: 10.1016/j.mspro.2014.07.177
  • Jadhav PR, Sridhar BR, Nagaral M, et al. Mechanical behavior of B4C particulates reinforced A356 alloy composites. Am J Mater Sci. 2016;6(4A):51–55. DOI:10.5923/c.materials.201601.10.
  • Dikea AS, Mindivanb F, Mindivanc H. Proceedings of the 3rd International Congress APMAS; 2014.
  • Senthilkumar N, Tamizharasan T, Anbarasan M. Mechanical characterization and tribological behaviour of Al-Gr-B4C metal matrix composite prepared by stir casting technique. J Adv Eng Res. 2014;1.1:48–59.
  • Brown ME, Gallagher PK. Handbook of thermal analysis and calorimetry: recent advances, techniques and applications. Vol. 5. UK: Elsevier; 2011.
  • Lin Y-L, Yang M-H, Wang J-H. On the thermal degradation of poly(styrene sulfone)s. I: an apparatus for investigation of early stages of thermal degradation. Polym Test. 1996;15:525–536. doi: 10.1016/0142-9418(96)00009-8
  • Nien K-E, Yang M-H, Chu T-J. The effects of reaction conditions on the synthetics and properties of polypyromellitimide. J Polym Eng. 1997;17(1):23–38. doi: 10.1515/POLYENG.1997.17.1.23
  • Yang M-H. The two-stages thermal degradation of polyacrylamide. Polym Test. 1998;17:191–198. doi: 10.1016/S0142-9418(97)00036-6
  • Lee R-J, Yang M-H, Wang J-H. On the thermal degradation of poly(styrene sulfone)s. Polym Test. 18 601–609 (1999). doi: 10.1016/S0142-9418(98)00058-0
  • Yang M-H. The thermal degradation of polyacrylamide with adsorbed metal ions as stabilizers. Polym Test. 2000;19:85–91. doi: 10.1016/S0142-9418(98)00074-9
  • Yang M-H. On the thermal degradation of poly(styrene sulfone)s VIII. Effect of structure on thermal characteristics. Polym Degrad Stab. 2002;76:69–77. doi: 10.1016/S0141-3910(01)00267-1
  • Tsay D-K, Yang M-H, Wang J-H. On the thermal degradation of polysulfones IX. The early stages of thermal degradation of poly(1-butene sulfone) and poly(2-methyl-1-pentene sulfone). Polym Degrad Stab. 2002;76:251–257. doi: 10.1016/S0141-3910(02)00021-6
  • Mishra R, Rao KJ. Thermal and morphological studies of binary and ternary composites of poly(vinylalcohol) with alumina and zirconia. Ceram Int. 2000;26:371–378. doi: 10.1016/S0272-8842(99)00066-8
  • Rao PS, Subrahmanya S, Sathyanarayana DN. Synthesis by inverse emulsion pathway and characterization of conductive polyaniline-poly(ethylene-co-vinyl acetate) blends. Synth Met. 2003;139:397–404. doi: 10.1016/S0379-6779(03)00192-9
  • Chu J-C, Lin Y-C, Yang M-H. Flexibility improvement of epoxy resin by using γ-butyrolactone. Polym Technol Eng. 1997;36:473–488. doi: 10.1080/03602559708000636
  • Contat-Rodrigo L. Thermal characterization of the oxo-degradation of polypropylene containing a pro-oxidant/pro-degradant additive. Polym Degrad Stab. 2013;98:2117–2124. doi: 10.1016/j.polymdegradstab.2013.09.011
  • Nishizaki H, Yosida K. Effect of molecular weight on various TGA methods in polystyrene degradation. J Appl Polyrn Sci. 1981;26(10):3503–3504. doi: 10.1002/app.1981.070261029
  • Horowitz HH, Metzger GA. A new analysis of thermogravimetric traces. Anal Chem. 1963;35:1464–1468. doi: 10.1021/ac60203a013
  • Sinha D, Dwivedi KK. Radiation-induced modification on thermal properties of different nuclear track detectors. Radiat Meas. 2003;36:713–718. doi: 10.1016/S1350-4487(03)00232-4
  • Nouh SA, Naby AA, Sellin PJ. Modification induced by proton irradiation in Makrofol-DE polycarbonate. Radiat Meas. 2007;42(10):1655–1660. doi: 10.1016/j.radmeas.2007.04.005
  • Nouh SA, El-Mahdy NA, Morsy AA. Modification of thermal, optical and structural properties of Bayfol nuclear track detector by alpha particles irradiation. Radiat Meas. 2005;39:471–477. doi: 10.1016/j.radmeas.2004.10.007
  • Heeger AJ, Kivelson S, Schrietter JR, et al. Solitons in conducting polymers. Rev Mod Phys. 1988;60:781. doi: 10.1103/RevModPhys.60.781
  • Stafsform S, Bredas JL, Epstein AJ, et al. Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys Rev Lett. 1987;59(13):1464. doi: 10.1103/PhysRevLett.59.1464
  • Bhattacharyya S, Soka SK, Chakarvorty D. Conductivity relaxation behavior of interpenetrating polymer network composites of polypyrrole and poly(styrene-co-butyl acrylate). J Phys Sci, B: Polym Phys. 2000;38:1193.
  • White L. Eur Rubber J. 1995;177(2):18.
  • Sohi NJS, Rahaman M, Khastgir D. Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate-based conductive composites: effect of different type of carbon fillers. Polym Compos. 2011;32:1148–1154. doi: 10.1002/pc.21133
  • Kim SH, Jang SH, Byun SW, et al. Electrical properties and EMI shielding characteristics of polypyrrole–nylon 6 composite fabrics. J Appl Polym Sci. 2003;87(12):l969–1974.
  • Norman RH. Electrically conducting rubber composite. UK: Elsevier; 1970.
  • Lonergan MC, et al. Array-based vapor sensing using chemically sensitive, carbon black−polymer resistors. Chem Mater. 1996;8:2298–2312. doi: 10.1021/cm960036j
  • El-Tantawy F, Dishovsky N. Novel V-shaped negative temperature coefficient of conductivity thermistors and electromagnetic interference shielding effectiveness from butyl rubber-loaded boron carbide ceramic composites. J Appl Polym Sci. 2004;91:2756–2770. doi: 10.1002/app.13458
  • Vittoria C, Koon NC, Lubitz P, et al. Microwave properties of (Fe0. 82B0. 18) 0.09 La0. 05R0. 05 amorphous metal alloys. J Appl Phys. 1984;55(6):1741–1742. doi: 10.1063/1.333461
  • Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001;39:279–285. doi: 10.1016/S0008-6223(00)00184-6