1,281
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Structural, Magnetic Properties and Electron Paramagnetic Resonance for BaFe12-xHgxO19 Hexaferrite Nanoparticles Prepared by Co-Precipitation Method

ORCID Icon, ORCID Icon & ORCID Icon
Pages 640-652 | Received 11 Nov 2019, Accepted 21 Apr 2020, Published online: 12 May 2020

References

  • Mosleh Z, Kameli P, Ranjbar M, et al. Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram Int 2014;40:7279–7284. doi: 10.1016/j.ceramint.2013.12.068
  • Pullar RC. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci. 2012;57(7):1191–1334. doi: 10.1016/j.pmatsci.2012.04.001
  • Harris VG, Geiler A, Chen Y, et al. Recent advances in processing and applications of microwave ferrites. J Magn Magn Mater 2009;321:2035–2047. doi: 10.1016/j.jmmm.2009.01.004
  • Chen D, Liu Y, Li Y, et al. Microstructure and magnetic properties of Al-doped barium ferrite with sodium citrate as chelate agent. J Magn Magn Mater 2013;337-338:65–69. doi: 10.1016/j.jmmm.2013.02.036
  • Almessiere MA, Slimani Y, El Sayed HS, et al. Investigation of Microstructural and magnetic properties of BaVxFe12−xO19 Nanohexaferrites. J Supercond Nov Magn. 2019;32:1437–1445. doi: 10.1007/s10948-018-4856-8
  • Maria Lumina Sonia M, Anand S, Maria Vinosel V, et al Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGd x Fe 2−x O 4 ferrite nano-crystallites synthesized by sol-gel route. J Magn Magn Mater 2018;466:238–251. doi: 10.1016/j.jmmm.2018.07.017
  • Elayakumar K, Dinesh A, Manikandan A, et al. Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J Magn Magn Mater. 2019;476:157–165. doi: 10.1016/j.jmmm.2018.09.089
  • Rai GM, Iqbal MA, Kubra KT. Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J Alloy Compd. 2010;495:229–233. doi: 10.1016/j.jallcom.2010.01.133
  • Chen W, Wu W, Mao M, et al. Improvement of the magnetization of barium hexaferrites Induced by substitution of Nd3+ ions for Fe3+ ions. J Supercond Nov Magn. 2017;30:707–714. doi: 10.1007/s10948-016-3886-3
  • Slimani Y, Baykal A, Manikandan A. Effect of Cr 3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. J Magn Magn Mater 2018;458:204–212. doi: 10.1016/j.jmmm.2018.03.025
  • Topkaya R. Effect of Zn substitution on temperature dependent magnetic properties of BaFe12O19 hexaferrites. J Alloy Compd. 2017;725:1230–1237. doi: 10.1016/j.jallcom.2017.07.248
  • Amer MA, Meaz TM, Attalah SS, et al. Structural and magnetic studies of Ti4+substituted M-type BaFe12O19 hexa-nanoferrites. Mater Sci Semicond Process 2015;40:374–382. doi: 10.1016/j.mssp.2015.07.007
  • Ali I, Islam MU, Ashiq MN, et al. Investigation of the magnetic properties of nanometric SrSmCoNi ferrite/PST matri. Ceram Int. 2015;41:8748–8754. doi: 10.1016/j.ceramint.2015.03.097
  • Kaur T, Kaur B, Bhat BH, et al. Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites. Physica B. 2015;456:206–212. doi: 10.1016/j.physb.2014.09.003
  • Khan HM, Islam MU, Xu Y, et al. Structural and magnetic properties of TbZn-substituted calcium barium M-type nano-structured hexa-ferrites. J Alloys Compd 2014;589:258–262. doi: 10.1016/j.jallcom.2013.11.107
  • Sharma R, Agarwala RC, Agarwala V. A study on the heat-treatments of nanocrystalline nickel substituted BaW hexaferrite produced by low combustion synthesis method. J Magn Magn Mater. 2007;312:117. doi: 10.1016/j.jmmm.2006.09.021
  • Yu H. Bafe12o19 powder with high magnetization prepared by acetone-aided coprecipitation. J Magn Magn Mater. 2013;341:79–85. doi: 10.1016/j.jmmm.2013.04.030
  • Tang X, Hong RY, Feng WG, et al. Ethylene glycol assisted hydrothermal synthesis of strontium hexaferrite nanoparticles as precursor of magnetic fluid. J Alloys Compd 2013;562:211–218. doi: 10.1016/j.jallcom.2013.02.049
  • Ghoneim AI, Amer MA, Meaz TM, et al. Dielectric properties of Ti4+ substituted BaFe12O19 nanoparticles. Physica B. 2017;507:1–12. doi: 10.1016/j.physb.2016.11.032
  • Catellanos PAM, Jarque JCS, Rivera JA. Magnetic and microstructural properties of the BaFe(12−(4/3)x)SnxO19 ceramic system. Physica B. 2005;362:95–102. doi: 10.1016/j.physb.2005.01.480
  • Safaan SA, Abo El Ata AM, El Messeery MS. Study of some structural and magnetic properties of Mn-substituted SrCu hexagonal ferrites. J Magn Magn Mater 2006;302:362–367. doi: 10.1016/j.jmmm.2005.09.041
  • Kumar S, Manglam MK, Supriya S, et al. Lattice strain mediated dielectric and magnetic properties in La doped barium hexaferrite. J Magn Magn Mater. 2019;473:312–319. doi: 10.1016/j.jmmm.2018.10.085
  • Kaur P, Chawla SK, Narang SB, et al. Effect of Cu-Co-Zr Doping on the properties of Strontium hexaferrites synthesized by Sol-Gel Auto-combustion method. J Supercond Nov Magn. 2017;30:635–645. doi: 10.1007/s10948-016-3835-1
  • Almessiere MA, Slimani Y, Tashkandi NA, et al. The effect of Nb substitution on magnetic properties of BaFe12O19 nanohexaferrites. Ceram Int 2019;45:1691–1697. doi: 10.1016/j.ceramint.2018.10.048
  • Islam MU, Ahmad I, Abbas T, et al. pp. 19–23, 155–158. Proceedings of 6th International Symposium on Advanced Materials, Islamabad (1999).
  • Deraz NM, Alarif A. Int J Electrochem Sci 2012;7:4585.
  • Verma A, Thakur OP, Prakash C, et al. Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique. Mater Sci Eng B. 2005;116:1–6. doi: 10.1016/j.mseb.2004.08.011
  • Cullity BD. Powder photographs, Debye Scherrer Method, 150–151, Elem. of X-ray Diffr., Addision Wesley Publishing Companym Inc., Reading, Massachusetts, M. Cohen, Printed in U.S.A; 1956.
  • Kumar ER, Jayaprakash R, Kumar S. The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles. J Magn Magn Mater 2014;351:70–75. doi: 10.1016/j.jmmm.2013.09.055
  • Amer MA, Meaz TM, Mostafa AG, et al. Time effect of annealing on phase transformations of Cu–Al–Cr nano-ferrites prepared by a co-precipitation method. Mater Sci Semicond Process 2015;32:68–75. doi: 10.1016/j.mssp.2014.12.034
  • Singh J, Singh C, Kaur D, et al. Elucidation of phase evolution, microstructural, mössbauer and magnetic properties of Co2+Al3+ doped M-type Ba Sr hexaferrites synthesized by a ceramic method. J Alloys Compd 2017;695:1112–1121. doi: 10.1016/j.jallcom.2016.10.237
  • Patange SM, Shirsath SE, Lohar KS, et al. Infrared spectral and elastic moduli study of NiFe2−xCrxO4 nanocrystalline ferrites. J Magn Magn Mater 2013;325:107–111. doi: 10.1016/j.jmmm.2012.08.022
  • Patange SM, Shirsath SE, Jadhav SP, et al. Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. J Mol Struct 2013;1038:40–44. doi: 10.1016/j.molstruc.2012.12.053
  • Mazen SA, Mansour SF, Dhahri E, et al. The infrared absorption and dielectric properties of Li–Ga ferrite. J Alloy Compd. 2009;470:294–300. doi: 10.1016/j.jallcom.2008.02.035
  • El-Sayed SM, Meaz TM, Amer MA, et al. Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Physica B. 2013;426:137–143. doi: 10.1016/j.physb.2013.06.026
  • Teh GB, Nagalingam S, Jefferson DA. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol–gel method. Mater Chem Phys 2007;101:158–162. doi: 10.1016/j.matchemphys.2006.03.008
  • Amir M, Gungunes H, Slimani Y, et al. Mössbauer Studies and magnetic properties of Cubic CuFe2O4 nanoparticles. J Supercond Nov Magn. 2019;32:557–564. doi: 10.1007/s10948-018-4733-5
  • Almessiere MA, Slimani Y, Baykal A. Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram Int 2018;44:9000–9008. doi: 10.1016/j.ceramint.2018.02.101
  • Bobade DH, Rathod SM, Mane ML. Sol–gel auto-combustion synthesis, structural and enhanced magnetic properties of Ni2+ substituted nanocrystalline Mg–Zn spinel ferrite. Physica B. 2012;407:3700–3704. doi: 10.1016/j.physb.2012.05.017
  • Slimani Y, Baykal A, Amir M, et al. Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites. Ceram Int 2018;44:15995–16004. doi: 10.1016/j.ceramint.2018.06.033
  • Almessiere MA, Slimani Y, Baykal A. Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: effect of vanadium substitution. J Alloy Compd. 2018;767:966–975. doi: 10.1016/j.jallcom.2018.07.212
  • Ali I, Islam MU, Awan MS, et al. Effect of Tb3+ substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol–gel auto-combustion technique. J Alloys Compd 2013;550:564–572. doi: 10.1016/j.jallcom.2012.10.121
  • Slimani Y, Güngüneş H, Nawaz M, et al. Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram Int 2018;44:14242–14250. doi: 10.1016/j.ceramint.2018.05.028
  • Ali I, Islam MU, Awan MS, et al. Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route. J Alloys Compd 2013;547:118–125. doi: 10.1016/j.jallcom.2012.08.122
  • Gazeau F, Bacri JC, Gendron F, et al. Magnetic resonance of ferrite nanoparticles. J Magn Magn Mater 1998;186:175–187. doi: 10.1016/S0304-8853(98)00080-8
  • Koksharov YA, Pankratov DA, Gubin SP, et al. Electron paramagnetic resonance of ferrite nanoparticles. J Appl Phys 2001;89:2293–2298. doi: 10.1063/1.1332417
  • Bejjit L, Haddad M. EPR study, in the normal and superconducting states, of GdBa2Cu3O7 single crystal before and after grinding. Physica C. 2002;371:339–343. doi: 10.1016/S0921-4534(01)01105-4
  • Sastry MD, Nagar YC, Bhushan B, et al. An unusual radiation dose dependent EPR line at geff = 2.54 in feldspars: possible evidence of Fe3+O2−↔ Fe2+O− and exchange coupled Fe3+–Fe2+–nO−. J Phys Condens Matter. 2008;20:025224. doi: 10.1088/0953-8984/20/02/025224
  • Singh JP, Dixit G, Srivastava RC, et al. Magnetic resonance in superparamagnetic zinc ferrite. Bull Mater Sci 2013;36:751–754. doi: 10.1007/s12034-013-0528-2
  • Weil JA, Bolton JR. Electron paramagnetic resonance – Elementary theory and Practical applications. 2nd ed. Hoboken (New Jersey): John Wiley & Sons, Inc.; 2007.
  • Mendoza A, Prado J, Almanza O. Structural and magnetic Features of Mn1-xZnxFe2O4 nanoparticles. Acta Phys Pol A. 2012;121:950–953. doi: 10.12693/APhysPolA.121.950
  • Li X, Lu G, Li S. Synthesis and characterization of fine particle ZnFe2O4 powders by a low temperature method. J Alloys Compd. 1996;235:150–155. doi: 10.1016/0925-8388(95)02022-5
  • Aschcroft NW, Mermin ND. Solid State Physics. New York: Harcourt College Publishers; 2001.
  • Shahane GS, Kumar A, Arora M, et al. Synthesis and characterization of Ni–Zn ferrite nanoparticles. J Magn Magn Mater 2010;322:1015–1019. doi: 10.1016/j.jmmm.2009.12.006