945
Views
89
CrossRef citations to date
0
Altmetric
Research Articles

A domain of influence in the Moore–Gibson–Thompson theory of dipolar bodies

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 653-660 | Received 07 Apr 2020, Accepted 27 Apr 2020, Published online: 12 May 2020

References

  • Choudhuri SKR. On a thermoelastic three-phase-lag model. J Therm Stresses. 2007;30:231–238. doi: 10.1080/01495730601130919
  • Thompson PA. Compressible-fluid dynamics. New York: McGraw-Hill; 1972.
  • Dell'Oro F, Lasiecka I, Pata V. The Moore-Gibson-Thompson equation with memory in the critical case. J Differ Equ. 2016;261:4188–4222. doi: 10.1016/j.jde.2016.06.025
  • Dell'Oro F, Pata V. On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity. Appl Math Optim. 2017;76:641–655. doi: 10.1007/s00245-016-9365-1
  • Lasiecka I, Wang X. Moore-Gibson-Thompson equation with memory, part II: general decay of energy. J Differ Equ. 2015;259:7610–7635. doi: 10.1016/j.jde.2015.08.052
  • Pellicer M, Sola-Morales J. Optimal scalar products in the Moore-Gibson-Thompson equation. Evol Equat Contr Theor. 2019;8:203–220. doi: 10.3934/eect.2019011
  • Conti M, Pata V, Quintanilla R. Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature. Asymptotic Anal. 2019: 1–21. DOI:10.3233/ASY-191576.
  • Kaltenbacher B, Lasiecka I, Marchand R. Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control Cybern. 2011;40:971–988.
  • Marchand R, McDevitt T, Triggiani R. An abstract semigroup approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math Meth Appl Sci. 2012;35:1896–1929. doi: 10.1002/mma.1576
  • Quintanilla R. Moore-Gibson-Thompson thermoelasticity. Math Mech Solids. 2019;24:4020–4031. doi: 10.1177/1081286519862007
  • Magana A, Quintanilla R. Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories. Math Mech Solids. 2009;14:622–634. doi: 10.1177/1081286507087653
  • Knops RJ, Quintanilla R. Continuous data dependence in linear theories of thermoelastodynamics. Part I: classical theories. Basics and logarithmic convexity. In: Hetnarski RB, editor. Encyclopedia of thermal stresses. Dordrecht: Springer; 2014.
  • Knops RJ, Payne LE. Growth estimates for solutions of evolutionary equations in Hilbert space with applicationsto elastodynamics. Arch Ration Mech Anal. 1971;41:363–398. doi: 10.1007/BF00281873
  • Mindlin RD. Micro-structure in linear elasticity. Arch Ration Mech Anal. 1964;16:51–78. doi: 10.1007/BF00248490
  • Green AE, Rivlin RS. Multipolar continuum mechanics. Arch Ration Mech Anal. 1964;17:113–147. doi: 10.1007/BF00253051
  • Fried E, Gurtin ME. Thermomechanics of the interface between a body and its environment. Contin Mech Thermodyn. 2007;19(5):253–271. doi: 10.1007/s00161-007-0053-x
  • Altenbach H, Öchsner A. Cellular and porous materials in structures and processes. Wien: Springer; 2010.
  • Marin M, Agarwal RP, Mahmoud SR. Nonsimple material problems addressed by the Lagrange's identity. Bound Value Probl. 2013;2013:1–14, Art. No. 135. doi: 10.1186/1687-2770-2013-135
  • Marin M, Nicaise S. Existence and stability results for thermoelastic dipolar bodies with double porosity. Contin Mech Thermodyn. 2016;28(6):1645–1657. doi: 10.1007/s00161-016-0503-4
  • Marin M, Craciun EM, Pop N. Considerations on mixed initial-boundary value problems for micropolar porous bodies. Dyn Syst Appl. 2016;25(1–2):175–196.
  • Marin M, Ellahi R, Chirila A. On solutions of Saint-Venant's problem for elastic dipolar bodies with voids. Carpathian J Math. 2017;33(2):219–232.
  • Marin M. The Lagrange identity method in thermoelasticity of bodies with microstructure. Int J Eng Sci. 1994;32(8):1229–1240. doi: 10.1016/0020-7225(94)90034-5
  • Eringen AC. Microcontinuum field theories. New York: Springer; 1999.
  • Othman MIA, Abbas IA. Eigenvalue approach for generalized thermoelastic porous medium under the effect of thermal loading due to laser pulse in DPL model. Indian J Phys. 2019;93:1567–1578. doi: 10.1007/s12648-019-01431-9
  • Abbas I, Marin M. Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Physica E. 2017;87:254–260. doi: 10.1016/j.physe.2016.10.048
  • Othman MIA. State space approach to generalized thermoelasticity plane waves with two relaxation times under the dependence of the modulus of elasticity on reference temperature. Can J Phys. 2003;81(12):1403–1418. doi: 10.1139/p03-100
  • Seadawy AR. Three-dimensional weakly nonlinear shallow water waves regime and its travelling wave solutions. Int J Comput Meth. 2018;15(3):1850017. doi: 10.1142/S0219876218500172
  • Seadawy AR. Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its a solitary wave solutions via mathematical methods. Eur Phys J Plus. 2017;132:
  • Seadawy AR. Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma. Physica A. 2016;455:44–51. doi: 10.1016/j.physa.2016.02.061
  • Stanciu A, Teodorescu-Draghicescu H, Vlase S, et al. Mechanical behavior of CSM450 and RT800 laminates subjected to four-point bend tests. Optoelectron Adv Mat. 2012;6(3–4):495–497.
  • Vlase S, Teodorescu-Draghicescu H, Motac DL, et al. Behavior of multiphase fiber-reinforced polymers under short time cyclic loading. Optoelectron Adv Mat. 2011;5(3–4):419–423.
  • Scarpetta E, Svanadze M. Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity. J Elasticity. 2015;120(1):67–86. doi: 10.1007/s10659-014-9505-2
  • Craciun EM, Baesu E, Soos E. General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: application to mode III fracture propagation. IMA J Appl Math. 2004;70:39–52. doi: 10.1093/imamat/hxh060
  • Radhakrishnan B, Chandru P. Boundary controllability of impulsive integrodifferential evolution systems with time-varying delays. J Taibah Univ Sci. 2018;12(5):520–531. doi: 10.1080/16583655.2018.1496395
  • Ellahi R, Alamri SZ, Basit A, et al. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–482. doi: 10.1080/16583655.2018.1483795
  • Riaz A, Ellahi R, Bhatti MM, et al. Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transf Res. 2019;50(16):1539–1560. doi: 10.1615/HeatTransRes.2019025622
  • Ullah R, Ellahi R, Sait SM, et al. On the fractional-order model of HIV-1 infection of CD4(+) T-cells under the influence of antiviral drug treatment. J Taibah Univ Sci. 2020;14(1):50–59. doi: 10.1080/16583655.2019.1700676