1,890
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Euler–Lagrange equations for variational problems involving the Riesz–Hilfer fractional derivative

ORCID Icon & ORCID Icon
Pages 678-696 | Received 12 Oct 2019, Accepted 16 Apr 2020, Published online: 20 May 2020

References

  • Kilbas AA, Srivastava HM, Trujillo JJ, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science Publishers BV; 2006. (North holland mathematics studies; vol. 204).
  • Miller KS, Ross B. An introduction to the fractional calculus and fractional differential equations. New York: Wiley; 1993.
  • Podlubny I. Fractional differential equations. San Diego (CA): Academic Press; 1999.
  • Smako SG, Kilbas AA, Marichev OI. Fractional integral and derivativies-theory and applications. Longhorne (PA): Gordan and Breach; 1993.
  • Ghomanjani F. A new approach for solving fractional differential algebric equations. J Taibah Univ Sci. 2017;11:1158–1164.
  • Ibrahim AG. Differential equations and inclusions of fractional order with impulse effect in Banach spaces. Bull Malays Math Sci Soc. 2020;43(1):69–109.
  • Moghaddam BP, Mostaghim ZS. A numercial method based on finite difference for solving fractional delay differential equations. J Taibah Univ Sci. 2013;7:120-127.
  • Lukashchuk SY. Approximate conservation laws for fractional differential equations. Commun Nonlinear Sci Numer Simul. 2019;68:147–159.
  • Wang JR, Ibrahim AG, O'Regan D, et al. A general class of noninstantaneous impulsive fractional differential inclusions in Banach spaces. Adv Differ Equ. 2017;2017(1):1–28. DOI:10.1186/s13662-017-1342-8
  • Wang JR, Ibrahim AG, O'Regan D. Hilfer- type fractional differential switched inclusions with noninstantaneous impulsive and nonlocal conditions. Nonlinear Anal Model Control. 2018;23(6):921–941.
  • Wang JR, Ibrahim AG, O'Regan D. Controllability of noninstantaneous impulsive semilinear functional differential inclusions without compactness. Indag Math New Ser. 2018;29:1362–1392.
  • Wang JR, Ibrahim AG, O'Regan D. Controllability of fractional evolutions inclusions with noninstantaneous impulsive. Int J Nonlinear Sci Numer Simul. 2018;19(3-4):321–334.
  • Wang JR, Ibrahim AG, O'Regan D. Global attracting solutions to Hilfer fractional differential inclusions of Sobolev type with noninstantaneous impulses and nonlocal conditions. Nonlinear Anal Model Control. 2019;24(5):775–803.
  • Wang JR, Ibrahim AG, O'Regan D. Nonemptyness and compactness of the solution set for fractional evolution inclusions with non-instantaneous impulses. Electron J Differ Equ. 2019;37:1–17.
  • Bliss GA. Lectures on the calculus of variations. University of Chicago Press; 1963.
  • Gelfand IM, Fomin SV. Calculus of variations. Prenticc-Hail; 1963.
  • Hestenes MR. Calculus of variations and optimal control theory. John Wiley & Sons; 1966.
  • Weinstock R. Calculus of variations with applications to physics and engineering. New-York: Dover publications, Inc.; 1974.
  • Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys Rev E. 1966;53(2):1890–1899.
  • Riewe F. Mechanics with fractional derivatives. Phys Rev E. 1997;55(3):3581–3592.
  • Agrawal OP. Formulation of Euler–Lagrange equations for fractional variational problems. J Math Anal Appl. 2002;272:368–379.
  • Agrawal OP. Fractional variational calculus in terms of Riesz fractional derivatives. J Phys A Math Theor. 2007;40:6287–6303.
  • Almeida R, Torres DFM. Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun Nonlinear Sci Numer Simul. 2011;16(3):1490–1500.
  • Almeida R. Fractional variational problems with the Riesz–Caputo derivative. Appl Math Lett. 2012;25:142–148.
  • Odzijewicz T, Malinowska AB, Torres DFM. Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 2012;75:1507–1515.
  • Sayev K, Rostami MR, Attari HS. A new study on delay fractional variation problems. Int J Comput Math. 2018;95(6-7):1170–1194.
  • Tavares D, Almeida R, Torres DFM. Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of.variable order. Optimization. 2015;64(6):1381–1391.
  • Almeida R, Morgado ML. The Euler–Lagrange and Legendre equations for functionals involving distributed-order fractional derivatives. Appl Math Comput. 2018;331:394–403.
  • Agrawal OP. Generalized variational problems and Euler–Lagrange equations. Comput Math Appl. 2010;59:1852–1864.
  • Almeida R, Pooseh S, Torres DFM. Computational methods in the fractional calculus of variations. London: Imp. Coll. Press; 2015.
  • Askari H, Ansari A. Fractional calculus of variations with a generalized fractional derivative. Fract Differ Calc. 2016;6:57–72.
  • Atanacković TM, Pilipović S. Variational problems with fractional derivatives: Euler–Lagrange equations. J Phys A Math Theor. 2011;41(9):195–201.
  • Baleanu D. About fractional quantization and fractional variational principles. Commun Nonlinear Sci Numer Simul. 2009;14(6):2520–2523.
  • Baleanu D, Trujillo JI. A new method of finding the fractional Euler–Lagrange and Hamilton equations within Caputo fractional derivatives. Common Nonlinear Sci Numer Simul. 2010;15(5):1111–1115.
  • Herzallah MAE, Baleanu D. Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 2009;58(1-2):385–391.
  • Jarad F, Abdeljawad T, Baleanu D. Fractional variational principles with delay within Caputo derivatives. Rep Math Phys. 2010;65(1):17–28.
  • Malinowska AB, Torres DFM. Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput Math Appl. 2010;59(9):3110–3116.
  • Malinowska AB, Torres DFM. Fractional variational calculus in terms of a combined Caputo derivative. In: Proceedings IFAC Workshop on Fractional Derivative and Applications IFAC FDA2010. Badajoz, Spain: University of Extremadura; 2010. p. 18–20.
  • Tavares D, Almeida R, Torres DFM. Constrained fractional variational problems of variable order. IEEE/CAA J Autom Sin. 2017;1(4):65–73.
  • Tavares D, Almeida R, Torres DFM. Combined fractional variational problems of variable order and some computational aspects. J Comput Appl Math. 2018;339:374–388.
  • Hilfer R. Applications of fractional calculus in physics. Singapore: World Scientific; 1999.
  • Agrawal OP, Muslih SI, Baleanu D. Generalized variational calculus in terms of multiparamaters fractional derivatives. Commun Nonlinear Sci Numer Simul. 2010;16:4756–4767.
  • Ali A, Seadawy AR, Lu D. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications. Open Phys. 2018;16:219–226.
  • Iqbal M, Seadawy AR, Lu D. Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods. Mod Phys Lett A. 2018;33(32):1850183.
  • Iqbal M, Seadawy AR, Lu D. Dispersive solitary wave solutions of nonlinear further modified Korteweg–de Vries dynamical equation in an unmagnetized dusty plasma. Mod Phys Lett A. 2018;33(37):1850217.
  • Iqbal M, Seadawy AR, Lu D. Construction of bright–dark solutions and ion-acoustic solitary wave solutions of dynamical system of nonlinear wave propagation. Mod Phys Lett A. 2019;34(37):1950309.
  • Iqbal M, Seadawy AR, Lu D, et al. Construction of a weakly nonlinear dispersion solitary wave solution for the Zakharov–Kuznetsov-modified equal width dynamical equation. Indian J Phys. 2019;21:1–10.
  • Iqbal M, Seadawy AR, Khalil OH, et al. Propagation of long internal waves in density stratified ocean for the (2+1)-dimensional nonlinear Nizhnik-Novikov-Vesselov dynamical equation. Res Phys. 2020;16:102838.
  • Iqbal M, Seadawy AR, Lu D. Applications of nonlinear longitudinal wave equation in a magneto-electro-elastic circular rod and new solitary wave solutions. Mod Phys Lett B. 2019;33(18):1950210.
  • Lu D, Seadawy AA, Iqbal M. Mathematical methods via construction of traveling and solitary wave solutions of three coupled system of nonlinear partial differential equations and their applications. Res Phys. 2018;11:1161–1171.
  • Nasreen N, Seadawy AR, Lu D, et al. Dispersive solitary wave and soliton solutions of the generalized third order nonlinear Schrodinger dynamical equation by modified analytical method. Res Phys. 2019;15:102641.
  • Seadaway AR, Lu D, Yue C. Travelling wave solutions of the generalized nonlinear fifth-order KDV water wave equations and its stability. J Taibah Univ Sci. 2017;11:623–633.
  • Seadawy AR, Iqbal M, Lu D. Nonlinear wave solutions of the kudryashov–Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity. J Taibah Univ Sci. 2019;13:1060–1072.
  • Seadawy AR, Iqbal M, Lu D. Propagation of kink and anti-kink wave solutions for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Phys A. 2020;544:123560.
  • Seadawy AR, Iqbal M, Lu D. Construction of soliton solutions of the modify unstable nonlinear Schrodinger dynamical equation in fiber optics. Indian J Phys. 2019:1–10.
  • Seadawy AR, Lu D, Iqbal M. Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana J Phys. 2019;93(1):10.
  • Seadawy AR, Iqbal M, Lu D. Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev–Petviashvili modified equal width dynamical equation. Comput Math Appl. 2019;78:3620–3632.