1,261
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Sources identification and contamination assessment of heavy metals in soil of Middle Nile Delta, Egypt

ORCID Icon, & ORCID Icon
Pages 750-761 | Received 17 Jan 2020, Accepted 10 May 2020, Published online: 03 Jun 2020

References

  • Abd El-Wahab RH, Al-Rashed AR, Al-Dousari A. Influences of physiographic factors, vegetation patterns and human impacts on aeolian landforms in arid environment. Arid Ecosyst. 2018;8(2):97–110. doi: 10.1134/S2079096118020026
  • Dousari AM. Causes and indicators of land degradation in the north-western part of Kuwait. Arab Gulf J Sci Res (1989). 2005;23(2):69–79.
  • Al-Dousari AM, Ahmed MOD, Al-Senafy M, et al. Characteristics of Nabkhas in relation to dominant perennial plant species in Kuwait. Kuwait J Sci Eng. 2008;35(1A):129.
  • Ahmed M, Al-Dousari N, Al-Dousari A. The role of dominant perennial native plant species in controlling the mobile sand encroachment and fallen dust problem in Kuwait. Arab J Geosci. 2016;9(2):134. doi: 10.1007/s12517-015-2216-6
  • Al-Awadhi JM, Al-Dousari A, Al-Enezi A. Barchan dunes in northern Kuwait. Arab Gulf J Sci Res. 2000;18(1):32–40.
  • Al-Ghadban AN, Uddin S, Beg MU, et al. Ecological consequences of river manipulations and drainage of Mesopotamian marshes on the Arabian Gulf ecosystem: investigations on changes in sedimentology and environmental quality, with special reference to Kuwait Bay. Kuwait Inst Sci Res (KISR). 2008;9362:1–141.
  • Al-Ghadban AN, Al Dousary A, Jacob PG, et al. Mineralogy, genesis and sources of surficial sediments in the ROPME Sea area. Tokyo: Tokyo University of Fisheries; 1998; p. 65–88.
  • Omran ES, El Razek A. Mapping and screening risk assessment of heavy metals concentrations in soils of the Bahr El-Baker region. Egypt J Soil Environ Manag. 2012;6(7):182–195.
  • Kelepertzis E. Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma. 2014;221–222:82–90. doi: 10.1016/j.geoderma.2014.01.007
  • Chabukdhara M, Nema AK. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicol Environ Saf. 2013;87:57–64. doi: 10.1016/j.ecoenv.2012.08.032
  • Jiang R, Wang M, Chen W. Characterization of adsorption and desorption of lawn herbicide siduron in heavy metal contaminated soils. Chemosphere. 2018;204:483–491. doi: 10.1016/j.chemosphere.2018.04.045
  • Birke M, Rauch U. Urban geochemistry in the Berlin Metropolitan area. Environ Geochem Health. 2000;22:233–248. doi: 10.1023/A:1026554308673
  • Morillo E, Romero AS, Madrid L, et al. Characterization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water Air Soil Pollut. 2008;187:41–51. doi: 10.1007/s11270-007-9495-9
  • Hu Y, Wang D, Wei L, et al. Heavy metal contamination of urban topsoils in a typical region of Loess Plateau, China. J Soils Sediments. 2014;14:928–935. doi: 10.1007/s11368-013-0820-1
  • Pan L, Wang Y, Ma J, et al. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ Sci Pollut Res. 2018;25(2):1055–1069. doi: 10.1007/s11356-017-0513-1
  • Reimann C, De Caritat P. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol. 2000;34:5084–5091. doi: 10.1021/es001339o
  • Karageorgis AP, Katsanevakis S, Kaberi H. Use of enrichment factors for the assessment of heavy metal contamination in the sediments of Koumoundourou Lake, Greece. Water Air Soil Pollut. 2009;204:243–258. doi: 10.1007/s11270-009-0041-9
  • Rashed MN. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater. 2010;178:739–746. doi: 10.1016/j.jhazmat.2010.01.147
  • Muñoz-Barbosa A, Gutiérrez-Galindo EA, Daesslé LW, et al. Relationship between metal enrichments and a biological adverse effects index in sediments from Todos Santos Bay, Northwest Coast of Baja California, México. Mar Pollut Bull. 2012;64:405–409. doi: 10.1016/j.marpolbul.2011.11.023
  • Martín JAR, Arias ML, Corbí JMG. Heavy metal contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geostatistical methods to study spatial variations. Environ Pollut. 2006;144:1001–1012. doi: 10.1016/j.envpol.2006.01.045
  • Templ M, Filzmoser P, Reimann C. Cluster analysis applied to regional geochemical data: problems and possibilities. Appl Geochem. 2008;23:2198–2213. doi: 10.1016/j.apgeochem.2008.03.004
  • Siegel FR. Environmental geochemistry of potentially toxic metals. Berlin: Springer; 2002; p. 218.
  • Alloway BJ. Bioavailability of elements in soil. In: Selinus O, Alloway B, Centeno JA, editors. Essentials of medical geology. Amsterdam: Elsevier Academic Press; 2005. p. 347–373.
  • Nazzal Y, Ghrefat H, Rosen MA. Application of multivariate geostatistics in the investigation of heavy metal contamination of roadside dusts from selected highways of the Greater Toronto Area, Canada. Environ Earth Sci. 2014;71:1409–1419. doi: 10.1007/s12665-013-2546-1
  • Mirsal IA. Soil pollution: origins, monitoring & remediation. Berlin: Springer; 2008; p. 312.
  • Khairy MA, Barakata AO, Mostafaa AR, et al. Multielement determination by flame atomic absorption of road dust samples in Delta Region, Egypt. Microchem J. 2011;97:234–242. doi: 10.1016/j.microc.2010.09.012
  • Abu Khatita AM. Assessment of soil and sediment contamination in the Middle Nile Delta area (Egypt); geo environmental study using combined sedimentological, geophysical and geochemical methods [Doctoral thesis]. Erlangen-Nürnberg, Germany: Friedrich-Alexander University; 2011. p. 214.
  • Zoller WH, Gladney ES, Duce RA. Atmospheric concentrations and sources of trace metals at the South Pole. Science. 1974;183:198–200. doi: 10.1126/science.183.4121.198
  • Matschullat J, Kritzer P, Maenhaut W. Geochemical fluxes in forested acidified catchments. Water Air Soil Pollut. 1995;85:859–864. doi: 10.1007/BF00476937
  • Shepard FP. Nomenclature based on sand-silt-clay ratios. J Sediment Res. 1954;24:140–158. doi: 10.1306/D426971A-2B26-11D7-8648000102C1865D
  • USDA (U.S. Department of Agriculture). Keys to soil taxonomy. 10th ed. Washington (DC): Nat. Resour. Conserv. Serv.; 2006.
  • Abu Khatita AM, de Wall H, Koch R. Anthropogenic particle dispersions in topsoils of the Middle Nile Delta: a preliminary study on the contamination around industrial and commercial areas in Egypt. Environ Earth Sci. 2016;75(3):1–19. doi: 10.1007/s12665-015-5050-y
  • Al-Dousari A, Al-Nassar W, Al-Hemoud A, et al. Solar and wind energy: challenges and solutions in desert regions. Energy. 2019;176:184–194. doi: 10.1016/j.energy.2019.03.180
  • Al-Enezi E, Al-Dousari A, Al-Shammari F. Modeling adsorption of inorganic phosphorus on dust fallout in Kuwait bay. J Eng Res. 2014;2(2):1–14. doi: 10.7603/s40632-014-0001-4
  • Al-Dousari AM, Alsaleh A, Ahmed M, et al. Off-road vehicle tracks and grazing points in relation to soil compaction and land degradation. Earth Syst Environ. 2019;3(3):471–482. doi: 10.1007/s41748-019-00115-y
  • Aba A, Al-Dousari AM, Ismaeel A. Depositional characteristics of 7 Be and 210 Pb in Kuwaiti dust. J Radioanal Nucl Chem. 2016;307(1):15–23. doi: 10.1007/s10967-015-4129-y
  • Aba A, Al-Dousari AM, Ismaeel A. Atmospheric deposition fluxes of 137Cs associated with dust fallout in the northeastern Arabian Gulf. J Environ Radioact. 2018;192:565–572. doi: 10.1016/j.jenvrad.2018.05.010
  • Al-Dousari AM, Al-Hazza A. Physical properties of aeolian sediments within major dune corridor in Kuwait. Arab J Geosci. 2013;6(2):519–527. doi: 10.1007/s12517-011-0353-0
  • Al-Dousari AM, Aba A, Al-Awadhi S, et al. Temporal and spatial assessment of pollen, radionuclides, minerals and trace elements in deposited dust within Kuwait. Arab J Geosc. 2016;9(2):95. doi: 10.1007/s12517-015-2182-z
  • Alshemmari H, Al-Dousari AM, Talebi L, et al. Mineralogical characteristics of surface sediment in Sulaibikhat Bay, Kuwait. Kuwait J Sci. 2013;40(2):159–176.
  • Abdel-Moati MAR, El-Sammak AA. Man-made impact on the geochemistry of the Nile Delta Lakes. A study of metals concentrations in sediments. Water Air Soil Pollut. 1997;97:413–429.
  • Ferreira AJD, Soares D, Serrano LMV, et al. Roads as sources of heavy metals in urban areas. The Covões catchment experiment, Coimbra, Portugal. J Soils Sediments. 2016;16(11):2622–2639. doi: 10.1007/s11368-016-1492-4
  • De Vos W, Tarvainen T, Salminen R, et al. Geochemical atlas of Europe, part 2 – interpretation of geochemical maps, additional tables, figures, maps, and related publications. Espoo: Geological Survey of Finland; 2006; p. 690.
  • Bowen HJM. Environmental chemistry of the elements. London: Academic Press; 1979; p. 333.
  • Wedepohl KH. The composition of contenintal crust. Geochim Cosmochim Acta. 1995;59:1217–1232. doi: 10.1016/0016-7037(95)00038-2
  • Makra L. Analysis of elemental composition of atmospheric aerosol in Indonesia. Acta Universitatis Szegediensis. Pars Climatologica Scientiarum Naturalium. 1999;32:65–76.
  • Chimidza S, Viksna A, Lindgren ES. EDXRF and TXRF analysis of aerosol particles and the mobile fraction of soil in Botswana. X-ray Spectrom. 2001;30:301–307. doi: 10.1002/xrs.502
  • Wang X, Qin Y, Chen Y. Heavy metals in urban roadside soils, part 1: effect of particle size fractions on heavy metals partitioning. Environ Geol. 2006;50:1061–1066. doi: 10.1007/s00254-006-0278-1
  • Shaheen SM. Pedochemical studies on some Egyptian soils under different depositional environments in relation to heavy metal content, pollution and remediation [Ph.D. thesis], Egypt: Tanta Uni; 2005.
  • Förstner U, Wittmann GTW. Metal pollution in the aquatic environment. Berlin: Springer Verlag; 1981; p. 486.
  • Jenne EA, Kennedy VC, Burchard JM, et al. Sediment collection and processing for selective extraction and for total trace element analysis. In: Baker RA, editor. Vol. 2. Sediment and contaminants. Ann Arbor: Sceince; 1980. p. 169–191.