1,199
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

A novel model to analyze Darcy Forchheimer nanofluid flow in a permeable medium with Entropy generation analysis

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & show all
Pages 916-930 | Received 24 Feb 2020, Accepted 12 Jun 2020, Published online: 12 Jul 2020

References

  • Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expo. 1995;66:99–105.
  • Saidur R, Leong KY, Mohammad H. A review on applications and challenges of nanofluids. Renewable Sustainable Energy Rev. 2011;15(3):1646–1668.
  • Wong KV, De Leon O. Applications of nanofluids: current and future. Advan Mech Eng. 2010;2:519–659.
  • Ramzan M, Sheikholeslami M, Saeed M, et al. On the convective heat and zero nanoparticle mass flux conditions in the flow of 3D MHD Couple stress nanofluid over an exponentially stretched surface. Sci Rep. 2019;9(1):562.
  • Lu D, Ramzan M, Ahmad S, et al. Impact of nonlinear thermal radiation and entropy optimization coatings with hybrid nanoliquid flow past a curved stretched surface. Coatings. 2018;8(12):430.
  • Muhammad T, Lu DC, Mahanthesh B, et al. Significance of Darcy-Forchheimer porous medium in nanofluid through carbon nanotubes. Commun Theor Phys. 2018;70(3):361.
  • Suleman M, Ramzan M, Zulfiqar M, et al. Entropy analysis of 3D non-Newtonian MHD nanofluid flow with nonlinear thermal radiation past over exponential stretched surface. Entropy. 2018;20(12):930.
  • Sheikholeslami M, Jafaryar M, Shafee A, et al. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020;121206; DOI:10.1016/j.jclepro.2020.121206.
  • Farooq U, Lu D, Ahmed S, et al. Computational analysis for mixed convective flows of viscous fuids with nanoparticles. J Therm Sci Eng Appl. 2019;11(2):021013.
  • Sheikholeslami M, Rezaeianjouybari B, Darzi M, et al. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–980.
  • Khan U, Ahmad S, Ramzan M, et al. Numerical simulation of Darcy–Forchheimer 3D unsteady nanofluid flow comprising carbon nanotubes with Cattaneo–Christov heat flux and velocity and thermal slip conditions. Processes. 2019;7(10):687.
  • Ellahi R, Sait SM, Shehzad N, et al. Numerical simulation and mathematical modeling of electro-osmotic Couette–poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry (Basel). 2019;11(8):1038.
  • Li Z, Ramzan M, Shafee A, et al. Numerical approach for nanofluid transportation due to electric force in a porous enclosure. Microsyst Technol. 2019;25(6):2501–2514.
  • Lu D, Ramzan M, Ahmad S, et al. A numerical treatment of MHD radiative flow of Micropolar nanofluid with homogeneous-heterogeneous reactions past a nonlinear stretched surface. Sci Rep. 2018;8(1):12431.
  • Lu DC, Ramzan M, Bilal M, et al. Upshot of chemical species and nonlinear thermal radiation on Oldroyd-B nanofluid flow past a bi-directional stretched surface with heat generation/absorption in a porous media. Commun Theor Phys. 2018;70(1):71.
  • Darcy, H. P. G. (1856). Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau, etc. V. Dalamont.
  • Forchheimer P. Wasserbewegung durch boden. Z Ver Deutsch, Ing. 1901;45:1782–1788.
  • Muskat M. The flow of homogeneous fluids through porous media. Soil Sci. 1938;46(2):169.
  • Pal D, Mondal H. Hydromagnetic convective diffusion of species in Darcy–forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int Commun Heat Mass Transfer. 2012;39(7):913–917.
  • Ganesh NV, Hakeem AA, Ganga B. Darcy–forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects. Ain Shams Eng J. 2016;9(4):939–951.
  • Alshomrani AS, Ullah MZ. Effects of homogeneous–heterogeneous reactions and convective condition in Darcy–Forchheimer flow of carbon nanotubes. J Heat Transfer. 2019;141(1). DOI:10.1115/1.4041553.
  • Saif RS, Hayat T, Ellahi R, et al. Darcy–Forchheimer flow of nanofluid due to a curved stretching surface. Int J Numer Methods Heat Fluid Flow. 2018;29(1):2–20. DOI:10.1108/HFF-08-2017-0301.
  • Seth GS, Kumar R, Bhattacharyya A. Entropy generation of dissipative flow of carbon nanotubes in rotating frame with Darcy-Forchheimer porous medium: A numerical study. J Mol Liq. 2018;268:637–646.
  • Ramzan M, Gul H, Zahri M. Darcy-Forchheimer 3D Williamson nanofluid flow with generalized Fourier and Fick’s laws in a stratified medium. Bull Pol Acad Sci Tech Sci. 2020;62(2):327–335.
  • Zeeshan A, Maskeen MM, Mehmood OU. Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media. Neural Comput Appl. 2018;30(11):3479–3489.
  • Ramzan M, Shaheen N, Kadry S, et al. Thermally stratified Darcy Forchheimer flow on a moving thin needle with homogeneous heterogeneous reactions and non-uniform heat source/sink. Appl Sci. 2020;10(2):432.
  • RamReddy C, Naveen P, Srinivasacharya D. Nonlinear convective flow of non-Newtonian fluid over an inclined plate with convective surface condition: a Darcy–Forchheimer model. Int J Appl Comput Math. 2018;4(1):51.
  • Ramzan M, Shaheen N. Thermally stratified Darcy–Forchheimer nanofluid flow comprising carbon nanotubes with effects of Cattaneo–christov heat flux and homogeneous–heterogeneous reactions. Phys Scr. 2019;95(1):015701.
  • Hayat T, Ullah I, Muhammad T, et al. Three-dimensional flow of Powell–Eyring nanofluid with heat and mass flux boundary conditions. Chin Phys B. 2016;25(7):074701.
  • Shahid N, Tunç C. Resolution of coincident factors in altering the flow dynamics of an MHD elastoviscous fluid past an unbounded upright channel. J Taibah Univ Sci. 2019;13(1):1022–1034.
  • Alam MN, Tunç C. Constructions of the optical solitons and other solitons to the conformable fractional Zakharov–Kuznetsov equation with power law nonlinearity. J Taibah Univ Sci. 2020;14(1):94–100.
  • Ramzan M, Bilal M, Chung JD. Radiative flow of Powell-Eyring magneto-nanofluid over a stretching cylinder with chemical reaction and double stratification near a stagnation point. PloS one. 2017;12(1):e0170790.
  • Powell RE, Eyring H. Mechanisms for the relaxation theory of viscosity. Nature. 1944;154(3909):427.
  • Patel M, Timol MG. Numerical treatment of Powell–Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC). Appl Numer Math. 2009;59(10):2584–2592.
  • Eldabe NT, Ghaly AY, Mohamed MA, et al. MHD boundary layer chemical reacting flow with heat transfer of Eyring–Powell nanofluid past a stretching sheet. Microsyst Technol. 2018;24(12):4945–4953.
  • Gholinia M, Hosseinzadeh K, Mehrzadi H, et al. Investigation of MHD Eyring–powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions. Case Stud Therm Eng. 2019;13:100356.
  • Upadhya SM, Raju CSK, Shehzad SA, et al. Flow of Eyring-Powell dusty fluid in a deferment of aluminum and ferrous oxide nanoparticles with Cattaneo-Christov heat flux. Powder Technol. 2018;340:68–76.
  • Waqas M, Jabeen S, Hayat T, et al. Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. Int Commun Heat Mass Transfer. 2020;112:104401.
  • Alsaedi A, Hayat T, Qayyum S, et al. Eyring–powell nanofluid flow with nonlinear mixed convection: entropy generation minimization. Comput Methods Programs Biomed. 2020;186:105183.
  • Muhammad T, Waqas H, Khan SA, et al. Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy. J Therm Anal Calorim. 2020: 1–16. DOI:10.1007/s10973-020-09459-4.
  • El-Masry YAS, Abd Elmaboud Y, Abdel-Sattar MA. The impacts of varying magnetic field and free convection heat transfer on an Eyring–powell fluid flow with peristalsis: VIM solution. J Taibah Univ Sci. 2020;14(1):19–30.
  • Nisar Z, Hayat T, Alsaedi A, et al. Wall properties and convective conditions in MHD radiative peristalsis flow of Eyring–Powell nanofluid. J Therm Anal Calorim. 2020. DOI:10.1007/s10973-020-09576-0.
  • Bejan A. Second-law analysis in heat transfer and thermal design. In: Hartnett JP, Irvine TF Jr, editors. Advances in heat transfer. Vol. 15. New York: Elsevier; 1982. p. 1–58.
  • Mahian O, Oztop H, Pop I, et al. Entropy generation between two vertical cylinders in the presence of MHD flow subjected to constant wall temperature. Int Commun Heat Mass Transfer. 2013;44:87–92.
  • Reddy GJ, Kethireddy B, Kumar M, et al. A molecular dynamics study on transient non-Newtonian MHD Casson fluid flow dispersion over a radiative vertical cylinder with entropy heat generation. J Mol Liq. 2018;252:245–262.
  • Butt AS, Tufail MN, Ali A, et al. Theoretical investigation of entropy generation effects in nanofluid flow over an inclined stretching cylinder. Int J Exergy. 2019;28(2):126–157.
  • Tlili I, Ramzan M, Kadry S, et al. Radiative MHD nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and Hall current. Entropy. 2020;22(3):354.
  • Ramzan M, Mohammad M, Howari F. Magnetized suspended carbon nanotubes based nanofluid flow with bio-convection and entropy generation past a vertical cone. Sci Rep. 2019;9(1):1–15.
  • Liao S. Comparison between the homotopy analysis method and homotopy perturbation method. Appl Math Comput. 2005;169(2):1186–1194.
  • Ariel PD. The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Comput Math Appl. 2007;54(7-8):920–925.