710
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Customized physical and structural features of phosphate-based glass-ceramics: role of Ag nanoparticles and Ho3+ impurities

ORCID Icon, , & ORCID Icon
Pages 954-962 | Received 17 Feb 2020, Accepted 11 May 2020, Published online: 12 Jul 2020

References

  • Li B, Liang J, Sun L, et al. Cyan-emitting Ba3Y2B6O15:Ce3+, Tb3+ phosphor: a potential color converter for near-UV-excited white LEDs. J. Lumin. 2019;211:388–393. doi:10.1016/j.jlumin.2019.04.001.
  • Chen R, Tian Y, Li B, et al. Efficient 2 µm emission in Nd3+/Ho3+co-doped silicate-germanate glass pumped by common 808 nm LD. Opt. Laser Technol. 2017;89:108–113. doi:10.1016/j.optlastec.2016.09.036.
  • Xia J, Tian Y, Li B, et al. Enhanced 2.0 µm emission in Ho3+/Yb3+ co-doped silica-germanate glass. Infrared Phys. Technol. 2017;81:17–20. doi:10.1016/j.infrared.2016.10.013.
  • Kumar BV, Sankarappa T, Kumar MP, et al. Electronic transport properties of mixed transition metal ions doped borophosphate glasses. J. Non. Cryst. Solids. 2009;355:229–234. doi:10.1016/j.jnoncrysol.2008.11.018.
  • Pang XG, Eeu TY, Leong PM, et al. Structural and luminescence study of rare earth and transition metal ions doped lead zinc borophosphate glasses. Adv. Mater. Res. 2014;895:280–283. doi:10.4028/www.scientific.net/AMR.895.280.
  • Elbatal FH, Ibrahim S, Abdelghany AM. Optical and FTIR spectra of NdF3-doped borophosphate glasses and effect of gamma irradiation. J. Mol. Struct. 2012;1030:107–112. doi:10.1016/j.molstruc.2012.02.049.
  • Linganna K, Narro-García R, Desirena H, et al. Effect of P2O5 addition on structural and luminescence properties of Nd3+-doped tellurite glasses. J. Alloys Compd. 2016;684:322–327. doi:10.1016/j.jallcom.2016.05.082.
  • Swapna K, Mahamuda S, Rao AS, et al. Visible luminescence characteristics of Sm3+ doped zinc alumino bismuth borate glasses visible luminescence characteristics of Sm3+ doped zinc alumino. J. Lumin. 2015;146:288–294. doi:10.1016/j.jlumin.2013.09.035.
  • Jupri SA, Ghoshal SK, Omar MF, et al. Spectroscopic traits of holmium in magnesium zinc sulfophosphate glass host: Judd – Ofelt evaluation. J. Alloys Compd. 2018;753:446–456. doi:10.1016/j.jallcom.2018.04.218.
  • Zhou M, Zhou Y, Su X, et al. Around 2 μm fluorescence and energy transfer in Tm3+/Ho3+co-doped tellurite glass. J. Non. Cryst. Solids. 2018;481:344–351. doi:10.1016/j.jnoncrysol.2017.11.015.
  • Kochanowicz M, Żmojda J, Miluski P, et al. Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+. J. Alloys Compd. 2017;727:1221–1226. doi:10.1016/j.jallcom.2017.08.243.
  • Suresh B, Zhydachevskii Y, Brik MG, et al. Amplification of green emission of Ho3+ ions in lead silicate glasses by sensitizing with Bi3+ ions. J. Alloys Compd. 2016;683:114–122. doi:10.1016/j.jallcom.2016.05.056.
  • Henderson B, Imbusch GF. Optical spectroscopy of inorganic solids. Oxford: Clarendon Press; 1989.
  • Walsh BM. Judd-Ofelt theory: principles and practices, in: Judd-Ofelt Theory Princ. Pract., NASA langley research center, Hampton, USA, 2006. doi:10.1007/1-4020-4789-4.
  • Pascuta P, Pop L, Stefan R, et al. The impact of Ag and Cu nanoparticles on optical and magnetic properties of new Tb2O3-PbO-TeO2 glass ceramic system. J. Alloys Compd. 2019;799:442–449. doi:10.1016/j.jallcom.2019.05.316.
  • Fang Y, Meng S, Hou J, et al. Experimental study of growth of silver nanoparticles embedded in Bi2O3-SiO2-B2O3 glass. J. Alloys Compd. 2019;809:151725. doi:10.1016/j.jallcom.2019.151725.
  • Kindrat II, Padlyak BV, Kukliński B, et al. Effect of silver co-doping on enhancement of the Sm3+ luminescence in lithium tetraborate glass. J. Lumin. 2019;213:290–296. doi:10.1016/j.jlumin.2019.05.045.
  • Moustafa SY, Sahar MR, Ghoshal SK. Spectroscopic attributes of Er3+ions in antimony phosphate glass incorporated with Ag nanoparticles: Judd-Ofelt analysis. J. Alloys Compd. 2017;712:781–794. doi:10.1016/j.jallcom.2017.04.106.
  • Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824–830. doi:10.1038/nature01937.
  • Zhang Z, Wang Z, He S, et al. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem. Sci. 2015;6:5197–5203. doi:10.1039/c5sc01787d.
  • Danmallam IM, Ghoshal SK, Ariffin R, et al. Europium ions and silver nanoparticles co-doped magnesium-zinc-sulfophosphate glasses: Evaluation of ligand field and Judd-Ofelt parameters. J. Lumin. 2019;216:116713. doi:10.1016/j.jlumin.2019.116713.
  • Ahmadi F, Hussin R, Ghoshal SK. Spectroscopic attributes of Sm3+doped magnesium zinc sulfophosphate glass: effects of silver nanoparticles inclusion. Opt. Mater. (Amst). 2017;73:268–276. doi:10.1016/j.optmat.2017.08.021.
  • Soltani I, Hraiech S, Horchani-Naifer K, et al. Effect of silver nanoparticles on spectroscopic properties of Er3+ doped phosphate glass. Opt. Mater. (Amst). 2015;46:454–460. doi:10.1016/j.optmat.2015.05.003.
  • Vijayakumar R, Marimuthu K. Luminescence studies on Ag nanoparticles embedded Eu3+doped boro-phosphate glasses. J. Alloys Compd. 2016;665:294–303. doi:10.1016/j.jallcom.2016.01.049.
  • Soltani I, Hraiech S, Elhouichet H, et al. Growth of silver nanoparticles stimulate spectroscopic properties of Er3+ doped phosphate glasses: heat treatment effect. J. Alloys Compd. 2016. doi:10.1016/j.jallcom.2016.06.027.
  • Yamusa YA, Hussin R, Shamsuri WNW. Physical, optical and radiative properties of CaSO4 – B2O3 – P2O5 glasses doped with Sm3+ ions. Chinese J. Phys. 2018;56:932–943. doi:10.1016/j.cjph.2018.03.025.
  • Kesavulu CR, Kim HJ, Lee SW, et al. Optical spectroscopy and emission properties of Ho3+-doped gadolinium calcium silicoborate glasses for visible luminescent device applications. J. Non. Cryst. Solids. 2017;474:50–57. doi:10.1016/j.jnoncrysol.2017.08.018.
  • Yamusa YA, Hussin R, Shamsuri WNW, et al. Impact of Eu3+on the luminescent, physical and optical properties of BaSO4–B2O3– P2O5glasses. Optik (Stuttg). 2018;164:324–334. doi:10.1016/j.ijleo.2018.03.019.
  • Said Mahraz ZA, Sahar MR, Ghoshal SK. Band gap and polarizability of boro-tellurite glass: influence of erbium ions. J. Mol. Struct. 2014;1072:238–241. doi:10.1016/j.molstruc.2014.05.017.
  • Usman A, Halimah MK, Latif AA, et al. Influence of Ho3+ions on structural and optical properties of zinc borotellurite glass system. J. Non. Cryst. Solids. 2018;483:18–25. doi:10.1016/j.jnoncrysol.2017.12.040.
  • Alqarni AS, Hussin R, Alamri SN, et al. Tailored structures and dielectric traits of holmium ion-doped zinc-sulpho-boro-phosphate glass ceramics. Ceram. Int. 2020;46:3282–3291. doi:10.1016/j.ceramint.2019.10.034.
  • Martynov KV, Zakharova EV, Stefanovsky SV, et al. The effect of phosphate melt cooling rate on phase composition and leach resistance of final waste form. MRS Adv. 2018;3:1085–1091. doi:10.1557/adv.2017.616.
  • Deopa N, Rao AS, Gupta M, et al. Spectroscopic investigations of Nd3+doped Lithium lead alumino borate glasses for 1.06 μm laser applications. Opt. Mater. (Amst). 2018;75:127–134. doi:10.1016/j.optmat.2017.09.047.
  • Reza Dousti M, Amjad RJ, Hosseinian S R, et al. Photoluminescence study of Sm3+-Yb3+co-doped tellurite glass embedding silver nanoparticles. J. Lumin. 2015;159:100–104. doi:10.1016/j.jlumin.2014.10.060.
  • Venkateswarlu M, Mahamuda S, Swapna K, et al. Holmium doped lead tungsten tellurite glasses for green luminescent applications. J. Lumin. 2015;163:64–71. doi:10.1016/j.jlumin.2015.02.052.
  • Alqarni AS, Hussin R, Ghoshal SK, et al. Intense red and green luminescence from holmium activated zinc-sulfo-boro-phosphate glass: Judd-Ofelt evaluation. J. Alloys Compd. 2019;808:151706. doi:10.1016/j.jallcom.2019.151706.
  • Herzfeld KF. On atomic properties which make an element a metal. Phys. Rev. 1927;29:701. doi:10.1103/physrev.29.701.
  • Das S, Ghosh A. Structure and electrical properties of vanadium boro-phosphate glasses. J. Non. Cryst. Solids. 2017;458:28–33. doi:10.1016/j.jnoncrysol.2016.12.012.
  • Wang Y, Yu Y, Zou Y, et al. Broadband visible luminescence in tin fluorophosphate glasses with ultra-low glass transition temperature. RSC Adv. 2018;8:4921–4927. doi:10.1039/c7ra13366a.