2,262
Views
23
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, structural, dielectric and optical properties of chitosan-MgO nanocomposite

, ORCID Icon, ORCID Icon &
Pages 975-983 | Received 02 Mar 2020, Accepted 29 Jun 2020, Published online: 15 Jul 2020

References

  • Vilela C, Pinto RJB, Pinto S, et al. Polysaccharides-Based Hybrids with Metal Nanoparticles. In Polysaccharide Based Hybrid Materials (pp. 9-30). Springer, Cham. 2018. p. 9–30. doi:10.1007/978-3-030-00347-0_2.
  • Kickelbick Guido. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in polymer science. 2003;28(1):83–114. doi:10.1016/s0079-6700(02)00019-9.
  • Xu T. Ion exchange membranes: state of their development and perspective. J Memb Sci. 2005;263(1-2):1–29. doi:10.1016/j.memsci.2005.05.002.
  • Dash M, Chiellini F, Ottenbrite RM, et al. Chitosan – a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014. doi:10.1016/j.progpolymsci.2011.02.001.
  • Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym. 2004;55(1):77–93. doi:10.1016/j.carbpol.2003.08.005.
  • Yang D, Li J, Jiang Z, et al. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chem Eng Sci. 2009;64(13):3130–3137. doi:10.1016/j.ces.2009.03.042.
  • Khalil KD, Ibrahim EI, Al-Sagheer FA. A novel, efficient, and recyclable biocatalyst for Michael addition reactions and its iron(iii) complex as promoter for alkyl oxidation reactions. Catal Sci Technol. 2016;6(5):1410–1416. doi:10.1039/c5cy01034a.
  • Khalil KD, Riyadh SM, Gomha SM, et al. Synthesis, characterization and application of copper oxide chitosan nanocomposite for green regioselective synthesis of [1,2,3] triazoles. Int. J. Biol. Macromol. 2019;130:928–937.
  • Riyadh SM, Khalil KD, Bashal AH. Structural properties and catalytic activity of binary poly (vinyl alcohol)/Al2O3 nanocomposite film for synthesis of thiazoles. Catalysts. 2020;10(1):100, doi:10.3390/catal10010100.
  • Riyadh SM, Khalil KD, Aljuhani A. Chitosan-MgO nanocomposite: one pot preparation and its utility as an ecofriendly biocatalyst in the synthesis of thiazoles and [1,3,4]thiadiazoles. Nanomaterials. 2018;8:928, doi:10.3390/nano8110928.
  • Wang JA, Novaro O, Bokhimi X, et al. Structural defects and acidic and basic sites in sol-gel MgO. J Phys Chem B. 1997;101:7448–7451.
  • Ding Y, Zhang G, Wu H, et al. Nanoscale magnesium hydroxide and magnesium oxide powders: Control over size, shape, and structure via hydrothermal synthesis. Chem. Mater. 2001;13:435–440.
  • Shukla SK, Parashar GK, Mishra AP, et al. Nano-like magnesium oxide films and its significance in optical fiber humidity sensor. Sensors Actuat B Chem. 2004;98(5).
  • Ho I-C, Xu Y, Mackenzie JD. Electrical and optical properties of MgO thin film prepared by sol-gel technique. J Solgel Sci Technol. 1997;9(3):295–301. doi:10.1007/bf02437193.
  • Polat O, Coskun M, Coskun FM, et al. Influence of transition element Os substitution on the structural and electrical features of perovskite structure LaCr1- xOsxO3. Mater Res Bull. 2020;124:110759–110777.
  • Coskun M, Polat O, Coskun FM, et al. The impact of Ir doping on the electrical properties of YbFe 1- x Ir x O 3 perovskite-oxide compounds. J Mater Sci: Mater Electron. 2020;31(2):1731–1744.
  • Polat O, Durmus Z, Coskun FM, et al. Engineering the band gap of LaCrO 3 doping with transition metals (Co, Pd, and Ir). J Mater Sci. 2018;53(5):3544–3556.
  • Polat O, Coskun FM, Coskun M, et al. Tailoring the band gap of ferroelectric YMnO 3 through tuning the Os doping level. J Mater Sci: Mater Electron. 2019;30(4):3443–3451.
  • Polat O, Coskun M, Coskun FM, et al. Electrical characterization of Ir doped rare-earth orthoferrite YbFeO3. J Alloys Compd. 2019;787:1212–1224.
  • Polata O, Caglar M, Coskun FM, et al. An experimental investigation: The impact of cobalt doping on optical properties of YbFeO3-? thin film. Mater Res Bull. 2019;119:110567–75.
  • Polat O, Caglar M, Coskun FM, et al. Examination of optical properties of YbFeO3 films via doping transition element osmium. Opt Mater (Amst). 2020;105:109911.
  • De Silva RT, Mantilaka MMMGPG, Ratnayake SP, et al. Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr Polym. 2017;157:739–747. doi:10.1016/j.carbpol.2016.10.038.
  • Praffulla SR, Bubbly SG. (2018). Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites. doi:10.1063/1.5032503.
  • El Kadib A, Primo A, Molvinger K, et al. Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation. Chem Eur J 2011;17(28):7940–7946.
  • Jonscher AK. Dielectric relaxation in solids. J Phys Appl Phys 1999;32(14):R57.
  • Khiar A, Puteh R, Arof A. Conductivity studies of a chitosan-based polymer electrolyte. Phys B Condens Matter. 2006;373(1):23–27.
  • Jonscher A, AK J. “The universal dielectric response: A review of data and their new interpretation,” 1980.
  • Hill R. Variable-range hopping. Phys Status Solidi A. 1976;34(2):601–613.
  • Tian F, Ohki Y. Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans Dielectr Electr Insul. 2014;21(3):929–931.
  • Coşkun M, Polat Ö, Coşkun FM, et al. The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO 3 and LaCr 0.90 Ir 0.10 O 3 perovskites. RSC Adv 2018;8(9):4634–4648.
  • Gh M, Sayed AM E, Morsi WM. Pectroscopic, thermal, and electrical properties of MgO/polyvinyl pyrrolidone/ polyvinyl alcohol nanocomposites. J Phys Chem Solids. 2018;115:238–247.
  • De Silva RT, Mantilaka MMMGPG, Ratnayake SP, et al. Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr Polym. 2017;157:739–747.
  • Khan SA, Lal JK, Al-Ghamdi AA. Thermal annealing effect of on optical constants of vacuum evaporated Se75S25-xCdx chalcogenide thin films. Opt Laser Technol. 2010;42:839.
  • Tauc J, Grigorovici R, Vencu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B. 1996;15:627–637.
  • El-Menyawy EM, Darwish AAA, Zedan IT. Impact of annealing on the structural and optical properties of methylene green nanostructure films prepared by drop casting. Opt. Laser Technol. 2016;79:158–163.
  • Bhattacharyya D, Chaudhuri S, Pal AK. Band gap and optical transitions in thin films from reflectance measurements. Vacuum. 1992;43:313–316.
  • Eugene H. Optics. 4th ed. San Francisco (CO): Adelphi University; 2002, pp. 113.
  • Zaki AA, Hagar M, Radwan NRE. Synthesis and optical properties of new alkylated pyridinium halides. Optik (Stuttg). 2017;139:95–103.
  • Abdullah OG, Aziz SB, Omer KM, et al. Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci. 2015;26:5303–5309.
  • Urs TG, Gowtham GK, Nandaprakash MB, et al. Determination of force constant and refractive index of a semiconducting polymer composite using UV/visible spectroscopy: a new approach. Indian J Phys. 2017;91:53–56.
  • Potzsch RT, Stahl BC, Komber H, et al. High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiol–yne chemistry. Polym Chem. 2014;5:2911–2921.