1,362
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Effect of CaCO3 nanoparticles on the microstructure and fracture toughness of ceramic nanocomposites

ORCID Icon
Pages 1201-1207 | Received 12 Mar 2020, Accepted 08 Aug 2020, Published online: 20 Aug 2020

References

  • Contreras J, Rodríguez E. Nanostructured insulators – a review of nanotechnology concepts for outdoor ceramic insulators. Ceram Int. 2017;43:8545–8550. doi: 10.1016/j.ceramint.2017.04.105
  • Sharma G, Kumar A, Sharma S, et al. Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ Sci. 2019;31:257–269. doi: 10.1016/j.jksus.2017.06.012
  • Kholiya K, Pandey K. High pressure compression behaviour of bulk and nanocrystalline SnO2. J Taibah Univ Sci. 2019;13:592–596. doi: 10.1080/16583655.2019.1611369
  • Mathew J, Joy J, George C. Potential applications of nanotechnology in transportation: a review. J King Saud Univ Sci. 2019;31:586–594. doi: 10.1016/j.jksus.2018.03.015
  • Vadivel S, Maruthamani D, Kumaravel M, et al. Supercapacitors studies on BiPO4 nanoparticles synthesized via a simple microwave approach. J Taibah Univ Sci. 2017;11:661–666. doi: 10.1016/j.jtusci.2016.09.007
  • Joseph A, Joshi G. High performance of fluoro polymer modified by hexa-titanium boride nanocomposites. J Mater Sci: Mater Elec. 2018;29:4749–4769.
  • Rasool G, Zhang T, Shafiq A, et al. Influence of chemical reaction on marangoni convective flow of nanoliquid in the presence of lorentz forces and thermal radiation: a numerical investigation. J Adv Nanotech. 2018;1:32–49. doi: 10.14302/issn.2689-2855.jan-19-2598
  • Naseem A, Shafiq A, Zhao L, et al. Analytical investigation of third grade nanofluidic flow over a Riga plate using Cattaneo-Christov model. Results Phys. 2018;9:961–969. doi: 10.1016/j.rinp.2018.01.013
  • Shafiq A, Rasool G, Khalique CM, et al. Second grade bioconvective nanofluid flow with buoyancy effect and chemical reaction. Symmetry. 2020;12:621. doi: 10.3390/sym12040621
  • Rasool G, Zhang T, Shafiq A. Second grade nanofluidic flow past a convectively heated vertical Riga plate. Phys Scr. 2019;94:e125212. doi: 10.1088/1402-4896/ab3990
  • Shafiq A, Zari I, Rasool G, et al. On the MHD casson axisymmetric marangoni forced convective flow of nanofluids. Math. 2019;7:1087. doi: 10.3390/math7111087
  • Shafiq A, Hammouch Z, Sindhu TN. Bioconvective MHD flow of tangent hyperbolic nanofluid with newtonian heating. Int J Mech Sci. 2017;133:759–766. doi: 10.1016/j.ijmecsci.2017.07.048
  • Shafiq A, Khan I, Rasool G, et al. Influence of single- and multi-wall carbon nanotubes on magnetohydrodynamic stagnation point nanofluid flow over variable thicker surface with concave and convex effects. Math. 2020;8:104. doi: 10.3390/math8010104
  • Shafiq A, Zari I, Khan I, et al. Marangoni driven boundary layer flow of carbon nanotubes toward a riga plate. Front Phys. 2020;7:e215. doi: 10.3389/fphy.2019.00215
  • Rasool G, Shafiq A, Khan I, et al. Entropy generation and consequences of MHD in darcy–forchheimer nanofluid flow bounded by non-linearly stretching surface. Symmetry (Basel). 2020;12:e652. doi: 10.3390/sym12040652
  • Shafiq A, Rasool G, Khalique CM. Significance of thermal Slip and convective boundary conditions in three dimensional rotating darcy-forchheimer nanofluid flow. Symmetry (Basel). 2020;12:e741. doi: 10.3390/sym12050741
  • Rasool G, Zhang T, Chamkha A, et al. Entropy generation and consequences of binary chemical reaction on MHD darcy–forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy. 2020;22:e18. doi: 10.3390/e22010018
  • Carbone M, Donia D, Sabbatella G, et al. Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci. 2016;28:273–279. doi: 10.1016/j.jksus.2016.05.004
  • Vakilifard M, Mahmoodi M. Dynamic moduli and creep damping analysis of short carbon fiber reinforced polymer hybrid nanocomposite containing silica nanoparticle-on the nanoparticle size and volume fraction dependent aggregation. Compos Part B: Eng. 2019;167:277–301. doi: 10.1016/j.compositesb.2018.12.045
  • Singh S, Kumar A, Jain A. Improving tensile and flexural properties of SiO2-epoxy polymer nanocomposite. Mater Today. 2018;5:6339–6344.
  • Ghafari E, Ghahari S, Feng Y, et al. Effect of Zinc oxide and Al-Zinc oxide nanoparticles on the rheological properties of cement paste. Compos Part B: Eng. 2016;105:160–166. doi: 10.1016/j.compositesb.2016.08.040
  • Bałata A, Mazu J. Effect of carbon nanoparticle reinforcement on mechanical and thermal properties of silicon carbide ceramics. Ceram Int. 2018;44:10273–10280. doi: 10.1016/j.ceramint.2018.03.034
  • Mohammadi H, Nilforoushan M, Tayebi M. Effect of nanosilica addition on bioactivity and in vivo properties of calcium aluminate cement. Ceram Int. 2020;46:4335–4343. doi: 10.1016/j.ceramint.2019.10.156
  • Meddah MS, Praveenkumar TR, Vijayalakshmi MM, et al. Mechanical and microstructural characterization of rice husk ash and Al2O3 nanoparticles modified cement concrete. Constr Build Mater. 2020;255:e119358. doi: 10.1016/j.conbuildmat.2020.119358
  • Smith A, Chotard T, Bonnet J, et al. Ultrasonic characterization of model mixtures of hydrated aluminous. Cem J Mater Sci. 2002;37:3847–3385. doi: 10.1023/A:1019634901368
  • Hazem M, Hashem F, El-Gamal S, et al. Mechanical and microstructure characteristics development of hardened oil well cement pastes incorporating fly ash and silica fume at elevated temperatures. J Taibah Univ Sci. 2020;14:155–167. doi: 10.1080/16583655.2020.1711998
  • Papadakis V. Experimental investigation and theoretical modeling of silica fume activity in concrete. Cem Concr Res. 1999;29:79–86. doi: 10.1016/S0008-8846(98)00171-9
  • Wang Y, Ying G, Hu J, et al. Analysis for influence factors of cold recycling mixture compaction test. Appl Mech Mater. 2012;204–208:1633–1637. doi: 10.4028/www.scientific.net/AMM.204-208.1633
  • Colovic B, Jokanovic V, Jovic N. Creating of highly active calcium-silicate phases for application in endodontics. Sci Sinter. 2013;45:341–350. doi: 10.2298/SOS1303341C
  • Jokanovic V, Colovic B, Mitric M. Synthesis and properties of a new dental material based on nano-structured highly active calcium silicates and calcium carbonates. Int J Appl Ceram Technol. 2014;11:57–64. doi: 10.1111/ijac.12070
  • Dizaj S, Jalali M, Zarrintan M, et al. Calcium carbonate nanoparticles; potential in bone and tooth disorders. Pharm Sci. 2015;20:175–182.
  • Bicchieri M, Valentini F, Calcaterra A, et al. Newly developed nano-calcium carbonate and nano-calcium propanoate for the deacidification of library and archival materials. J Anal Methods Chem. 2017;2017:e2372789. doi: 10.1155/2017/2372789
  • Miranda TB, Silva GG. Hierarchical microstructure of nanoparticles of calcium carbonate/epoxy composites: thermomechanical and surface properties. Express Polym Lett. 2020;14:179–191. doi: 10.3144/expresspolymlett.2020.15
  • Cosentino I, Liendo F, Arduino M, et al. Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry. Procedia Struct Integrity. 2020;26:155–165. doi: 10.1016/j.prostr.2020.06.019
  • Mydin R, Zahidi I, Ishak N, et al. Potential of calcium carbonate nanoparticles for therapeutic applications. Mal J Med Health Sci. 2018;14:201–206.
  • Parhizkar M, Nezhad K, Rezaei A. Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites. Adv Mater Res. 2016;5:121–130. doi: 10.12989/amr.2016.5.2.121
  • Yang G, Heo Y, Park S. Effect of morphology of calcium carbonate on toughness behavior and thermal stability of epoxy-based composites. Proc. 2019;7:178.
  • Ge Z, Wang K, Sun R, et al. Properties of self-consolidating concrete containing nano-CaCO3. J Sustain Cem Based Mater. 2014;3:191–200. doi: 10.1080/21650373.2014.903213
  • Wu Z, Shi C, Khayat K. Multi-scale investigation of microstructure, fiber pullout behavior, and mechanical properties of ultra-high performance concrete with nano-CaCO3 particles. Cem Concr Compos. 2018;86:255–265. doi: 10.1016/j.cemconcomp.2017.11.014
  • Patel D, Varia D, Mehta K. Review on comparative study by using nano CaCO3 and nano Fe2O3 in fly ash containing concrete. Int J Res Appl Sci Eng Technol (IJRASET). 2018;6:11–14. doi: 10.22214/ijraset.2018.6003
  • Zhao H, Sun G, Yu L, et al. Hydration of early age cement paste with nano-CaCO3 and SAP by LF-NMR spectroscopy: mechanism and prediction. Model Simul Eng. 2019;1:10–20.
  • Supit S, Shaikh F. Effect of nano-CaCO3 on compressive strength development of high volume fly ash mortars and concretes. J Adv Concr Technol. 2014;12:178–186. doi: 10.3151/jact.12.178
  • Cao M, Ming X, He K, et al. Effect of macro-, micro- and nano-calcium carbonate on properties of cementitious composites—a review. Materials (Basel). 2019;12:781–801. doi: 10.3390/ma12050781
  • Yang H, Che Y. Research of mortar containing phosphorous slag and calcium carbonate nanoparticles. Adv Mater Sci Eng. 2019;1:8–18.
  • Peng Y, Ma K, Long G, et al. Influence of nano-SiO2, nano-CaCO3 and nano-Al2O3 on rheological properties of cement–fly ash paste. Materials (Basel). 2019;12:2598–2620. doi: 10.3390/ma12162598
  • Li W, Huang Z, Zu T, et al. Influence of nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete. J. Mater. Civ. Eng. 2016;28:e04015068.
  • Liu X, Wang X, Liu A, et al. Study on the mechanical properties of cement modified by nanoparticles. Appl Mech Mater. 2012;157-158:161–164. doi: 10.4028/www.scientific.net/AMM.157-158.161
  • Sun Y, Zhang P, Guo W, et al. Effect of nano-CaCO3 on the mechanical properties and durability of concrete incorporating fly Ash. Adv Mater Sci Eng. 2020;2020:e7365862.
  • Shaikh F, Supit S. Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr Build Mater. 2014;70:309–321. doi: 10.1016/j.conbuildmat.2014.07.099
  • Liu X, Chen L, Liu A, et al. Effect of nano-CaCO3 on properties of cement paste. Energy Procedia. 2012;16:991–996. doi: 10.1016/j.egypro.2012.01.158
  • Al-Wakeel S, Nemecek J, Li L, et al. The effect of ittroducting nanoparticles on the fracture toughness of well cement paste. Int J Greenh Gas Con. 2019;84:147–153. doi: 10.1016/j.ijggc.2019.03.009
  • Nazerigivi A, Nejati H, Ghazvinian A, et al. Effects of SiO2 nanoparticles dispersion on concrete fracture toughness. Constr Build Mater. 2018;171:672–679. doi: 10.1016/j.conbuildmat.2018.03.224