1,185
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Pell–Lucas collocation method for numerical solutions of two population models and residual correction

ORCID Icon & ORCID Icon
Pages 1262-1278 | Received 17 Apr 2020, Accepted 18 Aug 2020, Published online: 08 Sep 2020

References

  • Verhulst PF. Notice sur la loi que la population suit dans son accroissement. Corresp Math Phys. 1838;10:113–121.
  • Verhulst PF. Recherches mathe´matiques sur la loi d'accroissement de la population. Me´m Acad Roy Brussels. 1845;18:1–38.
  • Verhulst PF. Recherches mathe´matiques sur la loi d'accroissement de la population. Me´m Acad Roy Brussels. 1847;20:1–32.
  • Volterra V. Leçons sur la The´orie Mathe´matique de la Lutte pour la Vie. Paris: Gauthier-Villars; 1931.
  • Volterra V. Variazioni e fluttazioni del numero d'individui in specie animali conviventi. Memoria della Reale Accademia Nazionale dei Lincei. 1926;2:31–113.
  • Amin R, Yüzbaşi Ş, Gao L, et al. Algorithm for the numerical solutions of volterra population growth model with fractional order via haar wavelet. Contemp Math. 2020;1(2):102–111.
  • Merdan M, Bekiryazici Z. Local fractional derivative operators method for solving nonlinear gas dynamic equation of fractional order. Int J Pure Appl Math. 2018;119(3):501–517.
  • Merdan M. Solutions of time-fractional reaction-diffusion equation with modified Riemann-Liouville derivative. Int J Phys Sci. 2012;7(15):2317–2326.
  • Turkyilmazoglu M. A direct solution of temperature field and physical quantities for the nonlinear porous fin problem. Int J Numer Method H. 2017;27:516–529.
  • Ullah R, Ellahi R, Sait SM, et al. On the fractional-order model of HIV-1 infection of CD4+ T-cells under the influence of antiviral drug treatment. J Taibah Univ Sci. 2020;14(1):50–59.
  • Acar NI, Dascioglu AA. A projection method for linear Fredholm-Volterra integro-differential equations. J Taibah Univ Sci. 2019;13(1):644–650.
  • Adel W. A fast and efcient scheme for solving a class of nonlinear Lienard's. Math Sci. 2020;14:167–175.
  • Adel W, Sabir Z. Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model via Bernoulli collocation method. Eur Phys J Plus. 2020;135(6):416–427.
  • El-Gamel M, Adel W, El-Azab MS. Bernoulli polynomial and the numerical solution of high-order boundary value problems. Math Nat Sci. 2019;4:45–59.
  • El-Gamel M, Adel W, El-Azab MS. Collocation method based on Bernoulli polynomial and shifted Chebychev for solving the Bratu Equation. J Appl Comput Math. 2018;7:3.
  • Ghomanjani F. A new approach for solving fractional differential algebraic equations. J Taibah Univ Sci. 2017;11(6):1158–1164.
  • Gumgum S, Savaşaneril NB, Kürkçü ÖK, et al. Lucas polynomial solution of nonlinear differential equations with variable delay. Hacet J Math Stat. 2020;49(2):553–564.
  • Khan H, Arif M, Mohyud-Din ST, et al. Numerical solutions to systems of fractional Voltera Integro differential equations, using Chebyshev wavelet method. J Taibah Univ Sci. 2018;12(5):584–591.
  • Savaşaneril NB. Laguerre series solutions of the delayed single degree-of-freedom oscillator excited by an external excitation and controlled by a control force. J Comput Theo Nanosci. 2018;15(2):606–610.
  • Shiralashetti SC, Kumbinarasaiah S. Laguerre wavelets collocation method for the numerical solution of the Benjamina–Bona–Mohany equations. J Taibah Univ Sci. 2019;13(1):9–15.
  • Turkyilmazoglu M. Hyperbolic partial differential equations with nonlocal mixed boundary values and their analytic approximate solutions. Int J Comput Methods. 2018;15(2):1850003.
  • Yüzbaşi Ş. An exponential method to solve linear Fredholm-Volterra integro-differential equations and residual improvement. Turk J Math. 2018;42(5):2546–2562.
  • Yüzbaşi Ş. A numerical scheme for solutions of a class of nonlinear differential equations. J Taibah Univ Sci. 2017;11(6):1165–1181.
  • Iqbal M, Seadawy AR, Lu D. Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods. Mod Phys Lett A. 2018;33(32):1850183.
  • Lu D, Seadawy AR, Iqbal M. Mathematical methods via construction of traveling and solitary wave solutions of three coupled system of nonlinear partial differential equations and their applications. Results Phys. 2018;11:1161–1171.
  • Seadawy AR, Iqbal M, Lu D. Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation. Comput Math Appl. 2019;78:3620–3632.
  • Seadawy AR, Iqbal M, Lu D. Nonlinear wave solutions of the Kudryashov-Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity. J Taibah Univ Sci. 2019;13(1):1060–1072.
  • Seadawy AR, Iqbal M, Lu D. Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg-de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Physica A. 2020;544:123560.
  • Seadawy AR, Iqbal M, Lu D. Propagation of long-wave with dissipation and dispersion in nonlinear media via generalized Kadomtsive-Petviashvili modified equal width-Burgers equation. Indian J Phys. 2020;94(5):675–687.
  • Seadawy AR, Lu D, Iqbal M. Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana J Phys. 2019;93(1):10.
  • Pearl R, Reed LJ. On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc Nat Acad Sci. 1920;6:275–288.
  • Lotka AJ. Elements of physical biology. Baltimore: Williams & Wilkins; 1925. Reissued as Elements of mathematical biology. New York: Dover.
  • Brauer F, Castillo-Chavez C, Castillo-Chavez C. Mathematical models in population biology and epidemiology, Vol. 2. 2nd ed. New York: Springer; 2001.
  • Pamuk S. The decomposition method for continuous population models for single and interacting species. Appl Math Comput. 2005;163:79–88.
  • Pamuk S, Pamuk N. He's homotopy perturbation method for continuous population models for single and interacting species. Comput Math Appl. 2010;59:612–621.
  • Yüzbaşi Ş. Bessel collocation approach for solving continuous population models for single and interacting species. Appl Math Model. 2012;36:3787–3802.
  • Öztürk Y, Anapali A, Gülsu M. A numerical scheme for continuous population models for single and interacting species. J Baun Inst Sci Technol. 2017;19(1):12–28.
  • Yüzbaşi Ş, Karaçayir M. A Galerkin-like approach to solve continuous population models for single and interacting species. Kuwait J Sci. 2017;44(2):9–26.
  • Biazar J, Montazeri RA. Computational method for solution of prey and predator problem. Appl Math Comput. 2005;163:841–847.
  • Biazar J. Solution of the epidemic model by Adomian decomposition method. Appl Math Comput. 2006;173:1101–1106.
  • Rafei M, Daniali H, Ganji DD, et al. Solution of the prey and predator problem by homotopy perturbation method. Appl Math Comput. 2007;188:1419–1425.
  • Rafei M, Daniali H, Ganji DD. Variational iteration method for solving the epidemic model and the prey and predator problem. Appl Math Comput. 2007;186:1701–1709.
  • Yusufoğlu E, Erbas B. He's variational iteration method applied to the solution of the prey and predator problem with variable coefficients. Phys Lett A. 2008;372:3829–3835.
  • Şahin M, Sezer M. Pell-Lucas collocation method for solving high-order functional differential equations with hybrid delays. Celal Bayar Univ J Sci. 2017;14(2):141–149.
  • Bahaa GM, Hamiaz A. Optimal control problem for coupled time fractional diffusion systems with final observations. J Taibah Univ Sci. 2019;13(1):124–135.
  • Ellahi R, Alamri SZ, Basit A, et al. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–482.
  • Mallawi F, Alzaidy JF, Hafez RM. Application of a Legendre collocation method to the space–time variable fractional-order advection-dispersion equation. J Taibah Univ Sci. 2019;13(1):324–330.
  • Dasdemir A. On the Pell, Pell-Lucas and modified Pell numbers by matrix method. Appl Math Sci. 2011;5:3173–3181.
  • Filipponi P, Horadam AF. Second derivative sequences of Fibonacci and Lucas polynomials. Fibonacci Quart. 1993;31(3):194–204.
  • Horadam AF, Mahon JM. Pell and Pell-lucas polynomials. Fibonacci Quart. 1985;23(1):17–20.
  • Koshy T. Pell and Pell-Lucas numbers with applications. New York: Springer; 2014.
  • Davaeifar S, Rashidinia J. Solution of a system of delay differential equations of multi pantograph type. J Taibah Univ Sci. 2017;11(6):1141–1157.