734
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental investigation of resonant frequency of sandstone saturated with magnetite nanofluid

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1243-1250 | Received 22 Dec 2019, Accepted 24 Aug 2020, Published online: 04 Sep 2020

References

  • Chilingar GV, Haroun M. Electrokinetics for petroleum and environmental engineers. New Jersey: John Wiley & Sons; 2014.
  • Sherman MM. Interpretation of dielectric permittivity measurements in the 20-to 50-MHz frequency range. SPE Formation Eval. 1990;5(01):76–80. doi: 10.2118/17605-PA
  • Adebayo LL, Wahaab FA, Lawal SK. Application of conventional geophysical method in investigating and characterizing landfills. Pet Coal. 2019;61(4):725–731.
  • Schön JH. Physical properties of rocks: Fundamentals and principles of petrophysics. Leoben: Elsevier; 2015.
  • Wahaab FA, Adebayo LL, Adekoya AA, et al. Physiochemical properties and electromagnetic wave absorption performance of Ni0. 5Cu0. 5Fe2O4 nanoparticles at X-band frequency. JAllC. 2020;836:155272.
  • Lesmes DP, Morgan FD. Dielectric spectroscopy of sedimentary rocks. J Geophys Res Solid Earth. 2001;106(B7):13329–13346. doi: 10.1029/2000JB900402
  • Yahya N, Ali AM, Wahaab FA, et al. Spectroscopic analysis of the adsorption of carbon based nanoparticles on reservoir sandstones. J Mater Res Technol. 2020;9(3):4326–4339. doi: 10.1016/j.jmrt.2020.02.058
  • Amin M, Khan AD. Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure. J Phys Chem C. 2015;119(37):21633–21638. doi: 10.1021/acs.jpcc.5b06154
  • Lyklema SDJ, Shilov EC. The relaxation of the double layer around colloidal particles and the low-frequency dielectric dispersion: Part I. Theoretical considerations. Electrochem. 1983;143(1-2):1–21.
  • Revil A, Skold M. Salinity dependence of spectral induced polarization in sands and sandstones. GeoJI. 2011;187(2):813–824.
  • Revil A. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1 GHz. Water Resour Res. 2013;49(1):306–327. doi: 10.1029/2012WR012700
  • Ebadati A, Davarpanah A, Mirshekari B. Stimulated-based characterization recovery enhancement feedback of oil-rim reservoirs. Energy Sources Part A. 2018;40(21):2528–2541. doi: 10.1080/15567036.2018.1503759
  • Olhoeft G. Low-frequency electrical properties. Geophysics. 1985;50(12):2492–2503. doi: 10.1190/1.1441880
  • Sihvola AH, Kong JA. Effective permittivity of dielectric mixtures. ITGRS. 1988;26(4):420–429.
  • Sahni A, Kumar M, Knapp RB. “Electromagnetic heating methods for heavy oil reservoirs,” Lawrence Livermore National Lab., CA (US), 2000.
  • Kothari N, Raina B, Chandak KB, et al. “Application of ferrofluids for enhanced surfactant flooding in IOR,” in SPE EUROPEC/EAGE Annual Conference and Exhibition, 2010: Society of Petroleum Engineers.
  • Divandari H, Hemmati-Sarapardeh A, Schaffie M, et al. Integrating synthesized citric acid-coated magnetite nanoparticles with magnetic fields for enhanced oil recovery: Experimental study and mechanistic understanding. J Pet Sci Eng. 2019;174:425–436. doi: 10.1016/j.petrol.2018.11.037
  • Fang FF, Choi HJ, Seo Y. Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS Appl Mater Interfaces. 2010;2(1):54–60. doi: 10.1021/am900577w
  • Belhaj AF, Elraies KA, Janjuhah HT, et al. Electromagnetic waves-induced hydrophobic multiwalled carbon nanotubes for enhanced oil recovery. J Pet Explor Prod Technol. 2019;9(4):2667–2670. doi: 10.1007/s13202-019-0653-6
  • Alnarabiji MS, Yahya N, Nadeem S, et al. Nanofluid enhanced oil recovery using induced ZnO nanocrystals by electromagnetic energy: Viscosity increment. Fuel. 2018;233:632–643. doi: 10.1016/j.fuel.2018.06.068
  • Lee K, Adil M, Zaid HM, et al. Wettability, interfacial tension (IFT) and viscosity alteration of nanofluids under electromagnetic (EM) waves for enhanced oil recovery (IFT) applicationsEngineering Design Applications. Switzerland: Springer; 2019. p. 305–311.
  • Obalalu AM, Wahaab FA, Adebayo LL. Heat transfer in an unsteady vertical porous channel with injection/suction in the presence of heat generation. J Taibah Univ Sci. 2020;14(1):541–548. doi: 10.1080/16583655.2020.1748844
  • Ali H, Soleimani H, Yahya N, et al. Absorption of electromagnetic waves in sandstone saturated with brine and nanofluids for application in enhanced oil recovery. J Taibah Univ Sci. 2020;14(1):217–226. doi: 10.1080/16583655.2020.1718467
  • Zhan X, Schwartz LM, Toksöz MN, et al. Pore-scale modeling of electrical and fluid transport in Berea sandstone. Geophysics. 2010;75(5):F135–F142. doi: 10.1190/1.3463704
  • Adebayo LLS, Soleimani H, Yahya N, et al. Investigation of the broadband microwave absorption of citric acid coated Fe3O4/PVDF composite using finite element method. Appl Sci. 2019;9(18):3877. doi:10.3390/app9183877.
  • Cai W, Wan J. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci. 2007;305(2):366–370. doi: 10.1016/j.jcis.2006.10.023
  • Adebayo LL, Soleimani H, Yahya N, et al. Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceram Int. 2020;46(2):1249–1268. doi: 10.1016/j.ceramint.2019.09.209
  • Jha BK, Oni MO. Electromagnetic natural convection flow in a vertical microchannel with Joule heating: exact solution. J Taibah Univ Sci. 2018;12(5):661–668. doi: 10.1080/16583655.2018.1494423
  • Olhoeft GR. Electrical properties of rocks. Phys Prop Rocks Miner. 1981;2:257–297.
  • Wen B, Cao M-S, Hou Z-L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon N Y. 2013;65:124–139. doi: 10.1016/j.carbon.2013.07.110
  • Wu N, Lv H, Liu J, et al. Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys Chem Chem Phys. 2016;18(46):31542–31550. doi: 10.1039/C6CP06066H
  • Choudhury TR, Basu A. AC conductivity and dielectric relaxation studies of sandstone: A correlation with its thermoluminescence. J Ovionic Res. 2008;4(6):35–42.
  • Wahaab FA, Yahya N, Shafie A, et al. Determination of optimum frequency for electromagnetic-assisted nanofluid core flooding. Appl Sci. 2019;9(21):4608. doi: 10.3390/app9214608