557
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

New analytical formalisms used in finite element analysis of robots with elastic elements

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1335-1341 | Received 29 Apr 2020, Accepted 08 Sep 2020, Published online: 22 Sep 2020

References

  • Bagci C. Elastodynamic response of mechanical systems using matrix exponential mode uncoupling and incremental forcing techniques with finite element method. Proceedings of the Sixth Word Congress on Theory of Machines and Mechanisms, India; 1983, p. 472.
  • Bahgat BM, Willmert KD. Finite element vibrational analysis of planar mechanisms. Mech Mach Theory. 1976;11:47. doi: 10.1016/0094-114X(76)90026-4
  • Cleghorn WL, Fenton EG, Tabarrok KB. Finite element analysis of high-speed flexible mechanisms. Mech Mach Theory. 1981;16:407. doi: 10.1016/0094-114X(81)90014-8
  • Vlase S, Marin M, Öchsner A, et al. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Continuum Mech Thermodyn 2019. doi:10.1007/s00161-018-0722-y.
  • Vlase S. Dynamical response of a multibody system with flexible elements with a general three-dimensional motion. Rom J Phys. 2012;57(3-4):676–693.
  • Vlase S, Dănăşel C, Scutaru ML, et al. Finite element analysis of a two-dimensional linear elastic systems with a plane “rigid motion. Rom. Journ. Phys. 2014;59(5–6):476–487.
  • Deü J-F, Galucio AC, Ohayon R. Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput Struct. 2008;86(3-5):258–265. doi: 10.1016/j.compstruc.2007.01.028
  • Hou W, Zhang X. Dynamic analysis of flexible linkage mechanisms under uniform temperature change. J Sound Vib. 2009;319(1-2):570–592. doi: 10.1016/j.jsv.2008.05.014
  • Neto MA, Ambrósio JAC, Leal RP. Composite materials in flexible multibody systems. Comput Methods Appl Mech Eng. 2006;195(50-51):6860–6873. doi: 10.1016/j.cma.2005.08.009
  • Piras G, Cleghorn WL, Mills JK. Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mech Mach Theory. 2005;40(7):849–862. doi: 10.1016/j.mechmachtheory.2004.12.007
  • Shi YM, Li ZF, Hua HX, et al. The modeling and vibration control of beams with active constrained layer damping. J Sound Vib. 2001;245(5):785–800. doi: 10.1006/jsvi.2001.3614
  • Zhang X, Erdman AG. Dynamic responses of flexible linkage mechanisms with viscoelastic constrained layer damping treatment. Comput Struct. 2001;79(13):1265–1274. doi: 10.1016/S0045-7949(01)00019-0
  • Gibbs JW. On the fundamental formulae of dynamics. American J. Math. 1879;2:49–64. doi: 10.2307/2369196
  • Appell P. Sur une forme générale des equations de la dynamique. C.R. Acad. Sci. Paris. 1899;129:146-152.
  • Mirtaheri SM, Zohoor H. The explicit Gibbs-Appell equations of motion for rigid-body constrained mechanical system. Book Series: RSI International Conference on Robotics and Mechatronics ICRoM, 2018, pp 304-309.
  • Korayem MH, Dehkordi SF. Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs-Appell formulation. Appl Math Model. 2019;65:443–463. doi: 10.1016/j.apm.2018.08.035
  • Shafei AM, Shafei HR. A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment. Multibody Syst Dyn. 2017;38(1):21–42. doi: 10.1007/s11044-015-9496-1
  • Korayem MH, Dehkordi SF. Derivation of dynamic equat-ion of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs-Appell formulation. Nonlinear Dyn. 2017;89(3):2041–2064. doi: 10.1007/s11071-017-3569-z
  • Marin M, Ellahi R, Chirilă A. On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J Math. 2017;33(2):219–232.
  • Vlase S, Negrean I, Marin M, et al. Energy of accelerations used to obtain the motion equations of a three- dimensional finite element. Symmetry (Basel). 2020;12(2):321. doi:10.3390/sym12020321.
  • Vlase S. Elimination of Lagrangian multipliers. Mech Res Commun. 1987;14:17. doi: 10.1016/0093-6413(87)90005-X
  • Negrean I, Kacso K, Schonstein C, et al. Mechanics. Theory and applications. Cluj-Napoca: UTPRESS; 2012.
  • Ursu-Fisher N. Elements of analytical mechanics. Cluj-Napoca: House of Science Book Press; 2015.
  • Negrean I, Crișan A-D. Synthesis on the acceleration energies in the advanced mechanics of the multibody systems. Symmetry (Basel). 2019;11(9):1077. doi: 10.3390/sym11091077
  • Negrean I, Crișan A-D, Vlase S. A New approach in analytical dynamics of mechanical systems. Symmetry (Basel). 2020;12(1):95. doi: 10.3390/sym12010095
  • Marin M, Vlase S, Ellahi R, et al. On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure, symmetry. Basel. 2019;11(7):1–16. Art. No. 863.
  • Özkan YS, Yaşar E, Seadawy AR. A third-order nonlinear Schrödinger equation: the exact solutions, group-invariant solutions and conservation laws. J Taibah U Sci. 2020;14(1):585–597. doi: 10.1080/16583655.2020.1760513
  • Hijaz A, Seadawy AR, Tufail A, et al. Analytic approximate solutions for some nonlinear parabolic dynamical wave equations. J Taibah U Sci. 2020;14(1):346–358. doi: 10.1080/16583655.2020.1741943
  • Marin M, Othman MIA, Seadawy AR, et al. A domain of influence in the Moore–gibson–thompson theory of dipolar bodies. J Taibah U Sci. 2020;14(1):653–660. doi: 10.1080/16583655.2020.1763664
  • Iqbal M, Seadawy AR, Lu D. Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods. Mod Phys Lett A. 2018;33(32):1850183. doi: 10.1142/S0217732318501833
  • Iqbal M, Seadawy AR, Lu D. Dispersive solitary wave solutions of nonlinear further modified Korteweg–de Vries dynamical equation in an unmagnetized dusty plasma. Mod Phys Lett A. 2018;33(37):1850217. doi: 10.1142/S0217732318502176
  • Lu D, Seadawy AR, Iqbal M. Mathematical methods via construction of traveling and solitary wave solutions of three coupled system of nonlinear partial differential equations and their applications. Results Phys. 2018;11:1161–1171. doi: 10.1016/j.rinp.2018.11.014
  • Lu D, Seadawy AR, Iqbal M. Construction of new solitary wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equations. Open Physics. 2018;16(1):896–909. doi: 10.1515/phys-2018-0111
  • Seadawy AR, Lu D, Iqbal M. Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana – J Phys. 2019;93(1):1183–1189. Article ID 0010. doi: 10.1007/s12043-019-1771-x
  • Iqbal M, Seadawy AR, Lu D. Applications of nonlinear longitudinal wave equation in a magneto-electro-elastic circular rod and new solitary wave solutions. Mod Phys Lett B. 2019;33(18):1950210. doi: 10.1142/S0217984919502105
  • Seadawy AR, Iqbal M, Lu D. Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev–petviashvili modified equal width dynamical equation. Comput Math Appl. 2019;78(11):3620–3632. doi: 10.1016/j.camwa.2019.06.013
  • Seadawy AR, Iqbal M, Lu D. Propagation of long-wave with dissipation and dispersion in nonlinear media via generalized Kadomtsive–petviashvili modified equal width-Burgers equation. Indian J Phys. 2020;94(5):675–687. doi: 10.1007/s12648-019-01500-z