6,900
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Groundwater potential mapping using GIS, linear weighted combination techniques and geochemical processes identification, west of the Qena area, Upper Egypt

, ORCID Icon &
Pages 1350-1362 | Received 30 Mar 2020, Accepted 09 Sep 2020, Published online: 22 Sep 2020

References

  • Shiklomanov I. World fresh water resources. In: P Gleick, editor. Water in crisis: a guide to the world’s fresh water resources. New York: Oxford University Press Inc.; 1993. p. 13–24.
  • Abdelkareem M, El-Baz F. Analyses of optical images and radar data reveal structural features and predict groundwater accumulations in the central Eastern Desert of Egypt. Arab J Geosci. 2015a;8:2653–2666. doi: 10.1007/s12517-014-1434-7
  • Abdalla F. Mapping of groundwater prospective zones using remote sensing and GIS techniques: a case study from the Central Eastern desert, Egypt. J Afr Earth Sci. 2012;70:8–17. DOI:10.1016/j.jafrearsci.2012.05.003.
  • Moubark K, Abdelkareem M. Characterization and assessment of groundwater resources using hydrogeochemical analysis, GIS and field data. Arabian J Geosciences. 2018;11:598. doi: 10.1007/s12517-018-3931-6
  • Abdelkareem M, El-Baz F, Askalany M, et al. Groundwater prospect map of Egypt’s Qena Valley using data fusion. Int J Image Data Fus. 2012;3(2):169–189. DOI:10.1080/19479832.2011.569510.
  • Lentswe GB, Molwalefhe L. Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. J Hydrol Reg Stud. 2020;28:100674. doi: 10.1016/j.ejrh.2020.100674
  • Saraf A, Choudhary P. Integrated remote sensing and GIS for ground water exploration and identification of artificial recharge site. Int J Remote Sens. 1998;19:1825–1841. doi: 10.1080/014311698215018
  • Yeh H, Cheng Y, Lin H, et al. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain Environ Res. 2016;26(1):33–43. DOI:10.1016/j.serj.2015.09.005.
  • Abdelkareem M, El-Baz F. Mode of formation of the Nile Gorge in northern Egypt by DEM-SRTM data and GIS analysis. Geol J. 2015b;51:760–778. DOI:10.1002/gj.2687.
  • Gustafsson P. High resolution satellite data and GIS as a tool for assessment of the groundwater potential of a semi-arid area. IXth thematic conference on geologic remote sensing, Pasadena, California, USA; 1993.
  • Jaiswal R, Mukherjee S, Jagannathan K, et al. Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development – an approach. Int J Remote Sens. 2003;24(5):993–1008. doi: 10.1080/01431160210144543
  • Kumar P, Gopinath G, Seralathan O. Application of remote sensing and GIS for the demarcation of groundwater potential areas of a river basin in Kerala, southwest coast of India. Int J Remote Sens. 2007;28:5583–5601. doi: 10.1080/01431160601086050
  • Minor T, Carter J, Charley M, et al. The use of GIS and remote sensing in ground water exploration for developing countries. Proc. of the 10th ERIM thematic conference on geologic remote sensing, San Antonio, USA; 1994.
  • Sander P, Minor T, Chesley M. Ground-water exploration based on lineament analysis and reproducibility tests. Groundwater. 1997;35(5):888–894. doi: 10.1111/j.1745-6584.1997.tb00157.x
  • Sener E, Davraz A, Ozcelik M. An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J. 2005;13(5):826–834. doi: 10.1007/s10040-004-0378-5
  • Srivastava S, Ghosh S, Kumar A. Spatial and temporal investment pattern in irrigation development and its impact on Indian agriculture. Research Bulletin No. 55. Bhubaneswar: Directorate of Water Management (ICAR); 2012.
  • Teeuw R. Groundwater exploration using remote sensing and a low-cost geographical information system. Hydrogeol J. 1999;3(3):21–30. DOI:10.1007/s100400050057.
  • Ganapuram S, Kumar G, Krishna I, et al. Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Adv Eng Softw. 2009;40(7):506–518. DOI:10.1016/j.advengsoft.2008.10.001.
  • Sikdar P, Chakraborty S, Enakshi A, et al. Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, west Bengal – a GIS and remote sensing approach. J Spatial Hydrol. 2004;4(2):1–24.
  • Voogd J. Multicriteria evaluation for urban and regional planning. Delft: Delftsche Uitgevers Maatschappij; 1983. doi: 10.6100/IR102252
  • Abd El-Razik M, Razvaliaev A. On the tectonic origin of the Nile Valley between Idfu and Qena, Egypt. Egypt J Geol. 1972;16(2):235–245.
  • Abdalla F, Moubark K. Assessment of well performance criteria and aquifer characteristics using step-drawdown tests and hydrogeochemical data, west of Qena area, Egypt. J Afr Earth Sci. 2018;138:336–347. DOI:10.1016/j.jafrearsci.2017.11.023.
  • Abdalla F, Ahmed A, Omer A. Degradation of groundwater quality of quaternary aquifer at Qena. Egypt J Environ Stud. 2009;1:19–30.
  • El-Hussaini A, El-Younsy A, Ibrahim H, et al. Geological and surface geoelectrical investigations on the area southwest of Qena, Western Desert, Egypt. Assiut: Faculty of Science, Assiut University Bulletin; 1992; 89–103.
  • Moussa M. Shallow Quaternary aquifers as delineated by geoelectrical measurements between Qift and Naga-Hammady, Nile valley, Egypt. Egypt J Geol. 2000;44(2):549–558.
  • Said R. The geology of Egypt. New York: Elsevier; 1962.
  • Said R. The geological evolution of the River Nile. New York: Springer Verlag; 1981. doi: 10.1007/978-1-4612-5841-4
  • Salem R. Geophysical study for El- Marashda area by the electric methods. M.Sc. thesis, Department of Geology, Assiut University, Egypt; 1986.
  • Youssef A, Ghallab A. Using remote sensing data, GIS, and filed investigation for preliminary consideration of sustainable development: west Qena area, Eygpt. Ass Univ Bull Environ Res. 2007;10(2):31–45.
  • Barsom N. Remote sensing and groundwater data investigation in the plain west of Qena city, Egypt. M.Sc. Thesis, South Valley University, Qena, Egypt; 2016.
  • El-Rawy M, Abdalla F, El Alty M. Water resources in Egypt. In: Hamimi Z, El-Barkooky A, Martínez Frías J, Fritz H, Abd El-Rahman Y, editor. The geology of Egypt, regional geology reviews. Springer Nature; 2020. p. 153–189. doi: 10.1007/978-3-030-15265-9_2
  • Conoco. Geological Map of Egypt, Scale 1:500,000, Sheet NG36NW Asyut-NG36SW Luxor, Egypt. Cairo: The Egyptian General Petroleum Corporation; 1987.
  • Burrough PA. Principles of geographical information systems for land resources assessment. Oxford: Oxford University Press; 1986.
  • Soltan ME. Evaluation of groundwater quality in Dakhla Oasis (Egyptian Western Desert). Environ Monit Assess. 1999;57:157–168. doi: 10.1023/A:1005948930316
  • Schoeller H. Hydrodynamique dans le karst Hydrodynamics of karst. Actes du Colloques de Doubronik. IAHS/UNESCO, Wallingford, pp. 3–20; 1965.
  • Matthess G. The properties of groundwater. New York: Wiley; 1982.
  • Jenson S, Domingue J. Extracting topographic structure from digital elevation model data for geographic information system analysis. Photogramm Eng Remote Sens. 1988;54:1593–1600.
  • O’Callaghan J, Mark D. The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process. 1984;28(3):323–344. doi:10.1016/S0734-189X(84)80011-0.
  • Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 1979;8:127–150. doi: 10.1016/0034-4257(79)90013-0
  • Sajedi-Hosseini F, Choubin B, Solaimani K, et al. Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: application of the fuzzy decision making trial and evaluation laboratory approach. Land Degrad Dev. 2018;29:3092–3103. doi: 10.1002/ldr.3058
  • Benjmel K, Amraoui F, Boutaleb S, et al. Mapping of groundwater potential zones in crystalline terrain using remote sensing, GIS techniques, and multicriteria data analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco). Water (Basel). 2020;2020(12):471.
  • Naghibi SA, Pourghasemi HZ, Dixon B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess. 2016;188:44. doi: 10.1007/s10661-015-5049-6
  • El-Baz F, Himida I. Groundwater potential of the Sinai Peninsula, Egypt, Project Summary. Cairo: AID; 1995.
  • Punmia B, Jain A, Jain A. Soil mechanics and foundations. New Delhi: Laxmi Publications (P) Ltd; 2005.
  • Senanayake I, Dissanayake D, Mayadunna B, et al. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci Front. 2016;7:115–124. doi: 10.1016/j.gsf.2015.03.002
  • Abd El-Bassier M. Hydrogeological and hydrochemical studies of the Quaternary aquifer in Qena Governorate. MSc. Thesis, Faculty of Science, Assuit University; 1997.
  • Abd El-Monim A. Hydrogeology of the Nile Basin in Sohage Province. MSc. Thesis, Sohage Faculty of Science, Assuit University, 165; 1986.
  • Abdelkareem M. Targeting flash flood potential areas using remotely sensed data and GIS techniques. Natural Hazards J. 2017;85(1):19–37. doi: 10.1007/s11069-016-2556-x
  • Pande CB, Khadri SFR, Moharir KN, et al. Assessment of groundwater potential zonation of Mahesh River basin Akola and Buldhana districts, Maharashtra, India using remote sensing and GIS techniques. Sustain Water Resour Manag. 2018;4:965–979. doi: 10.1007/s40899-017-0193-5
  • Hachem AMY, Ali E, Abdelhadi El O, et al. Using remote sensing and GIS-multicriteria decision analysis for groundwater potential mapping in the Middle Atlas Plateaus, Morocco. Res J Recent Sci. 2015;4(7):33–41.
  • Lattman L, Parizek R. Relationship between fracture traces and the occurrence of ground water in carbonate rocks. J Hydrol. 1964;2:73–91. doi: 10.1016/0022-1694(64)90019-8
  • Das S, et al. Hydrogeomorphological mapping in ground water exploration using remotely sensed data – a case study in Keonjhar District, Orissa. J Indian Soc Remote Sens. 1997;25(4):145–259. doi: 10.1007/BF03019366
  • Issawi B, Osman R. Egypt during the Cenozoic: geological history of the Nile River. Bull Tethys Geol Soc. 2008;3:43–62.
  • Razandi Y, Pourghasemi HR, Neisani NS, et al. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inform. 2015;8:867–883. doi: 10.1007/s12145-015-0220-8
  • Rahmati O, Samani AN, Mahdavi M, et al. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. 2015;8:7059–7071. doi: 10.1007/s12517-014-1668-4
  • Mukherjeea I, Singha UK. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. Catena. 2020;194:104681. doi: 10.1016/j.catena.2020.104681
  • Ghosh D, Mandal M, Banerjee M, et al. Impact of hydro-geological environment on availability of groundwater using analytical hierarchy process (AHP) and geospatial techniques: A study from the upper Kangsabati river basin. Groundwater Sustain Develop. 2020;11:100419. doi: 10.1016/j.gsd.2020.100419
  • Andualema TG, Demekeb GG. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile basin, Ethiopia. J Hydrol Reg Stud. 2019;24:100610. doi: 10.1016/j.ejrh.2019.100610
  • Arulbalaji P, Padmalal D, Sreelash K. GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Sci Rep. 2019;9; DOI:10.1038/s41598-019-38567-x.
  • Abu-Ella EM. Evaluation of groundwater chemistry in the area southwest of Qena city, Egypt. Bull Fac Sci Assiut Univ. 1993;22(1-F):1–14.
  • Todd K. Ground water hydrology. New York: John Wiley & Sons; 1959.
  • ASTM. Water and environmental technology, annual book of ASTM standards, Sec. 11, Vol. 11.01 & 11.02. West Conshohocken: McGraw-Hill Publishing Company; 1976.
  • Sawyer C, Carty P, Parkin G. Chemistry for environmental engineering. Fourth ed. New York: Mc Graw – Hill International Editions; 1994.
  • Stuyfzand P. A new hydrochemical classification of water types: principles and application to the coastal dunes aquifer system of the Netherlands. Proc. 9th Salt Water Intrusion Meeting, Delft 12-16 may, Delft Univ. Techn., pp. 641–655; 1986.
  • Li Y. Study on environmental isotopes in groundwater of Yangzhou–Taizhou–JingJiang Area. M.Sc. thesis, Chinese Academy of Geological Sciences (in Chinese); 2010.