889
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ovicidal, pupicidal and bactericidal effects of aminopyridinium-based ionic liquids on Culex pipiens and certain human pathogenic bacteria

ORCID Icon, ORCID Icon, , , , & show all
Pages 1503-1513 | Received 23 Jul 2020, Accepted 10 Oct 2020, Published online: 24 Oct 2020

References

  • Hay SI, Guerra CA, Tatem AJ, et al. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol. 2005;3:81–90.
  • Sinka ME, Bangs MJ, Manguin S, et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis. Parasites and Vectors. 2011;4:89.
  • Alikhan M, Ghamdi K, Mahyoub J. Aedes mosquito species in western Saudi Arabia. Journal of Insect Science. 2014;14(69):1–7. http://www.insectscience.org/14.69.
  • Lucey D, Gostin L. A yellow fever epidemic: a new global health emergency? JAMA. 2016;315:2661–2662.
  • Petersen L, Jamieson D, Powers A, et al. Zika virus. N Engl J Med. 2016;374:1552–1563.
  • Vest KG. Zika virus: a basic overview of an emerging arboviral infection in the western hemisphere. Disaster Med Public Health Prep. 2016;10:707–712.
  • Rana M, Singh SJ, Yadav S. Effect of microencapsulated plant extracts on mosquito repellency. Journal of Applied and Natural Science. 2017;9:2127–2131.
  • Kim HC, Wilkerson RC, Pecor JE, et al. New records and reference collection of mosquitoes (Diptera: Culicidae) on Jeju Island, Republic of Korea. Entomol Res. 2005;35(1):55–66.
  • Scott G, Yoshimizu M, Shinji K. Pyrethroid resistance in Culex pipiens mosquitoes. Pestic Biochem Physiol. 2015;120:68–76.
  • Farajollahi A, Fonseca DM, Kramer LD, et al. “Bird biting” mosquitoes and human disease: a review of the role of culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol. 2011;11(7):1577–1585. doi: 10.1016/j.meegid.2011.08.013.
  • Caraballo H, King K. Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. Emerg Med Pract. 2014;16:1–23.
  • Benelli G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microb Technol. 2016;95:58–68. https://doi.org/10.1016/j.enzmictec.2016.08.022.
  • Hamer GL, Anderson TK, Donovan DJ, et al. Dispersal of Adult Culex mosquitoes in an urban West Nile Virus hotspot: a mark-capture study incorporating stable isotope enrichment of natural larval habitats. PLoS Negl Trop Dis. 2014;8(3):e2768. doi:10.1371/journal.pntd.0002768.
  • Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–391.
  • Strode C, Donegan S, Garner P, et al. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.
  • Naqqash M, Gokce A, Bakhsh A, et al. Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res. 2016;115:1363–1373.
  • Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–196.
  • Fouad EE, Saâd M, Adlaoui EB, et al. Resistance of Culex pipiens (Diptera: Culicidae) to organophosphate insecticides in centeral Morocco. International Journal of Toxicological and Pharmacological Research. 2016;8(4):263–268.
  • World Health Organization. Global programme to eliminate lymphatic filariasis: progress report on mass drug administration. Wkly Epidemiol Rec. 2010;35:377–388.
  • World Health Organization. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: Switzerland; 2016.
  • Knecht H, Richards S, Balanay A, et al. Impact of mosquito age and insecticide exposure on susceptibility of Aedes albopictus (Diptera: Culicidae) to infection with Zika Virus. Pathogens. 2018;7:67.
  • Benelli G, Jeffries C, Walker T. Biological control of mosquito vectors: past, present, and future. Insects. 2016;7:52. doi:10.3390/insects7040052.
  • Jayapriya G, Shoba F. Larvicidal, ovicidal, adulticidal and repellent activity of Justicia adhatoda Linn (acanthaceae) against Aedes aegypti linn and Culex quinquefasciatus say. Int J Recent Sci Res. 2014;5:2321–2327.
  • Sakthivadivel M, Saravanan T, Tenzin G, et al. Laboratory evaluation of two meliaceae species as larvicides against Culex quinquefasciatus Say (Diptera: Culicidae). Vector Biology Journal. 2016;1:2–10.
  • Rajesh A, Shamsudin M. Evaluation of ovicidal and larvicidal potential of Kalanchoe pinnata leaf extracts against filarial mosquito vector, Culex quinquefasciatus. International Journal of Mosquito Research. 2017;4:142–147.
  • Ganesan P, Stalin A, Paulraj M, et al. Biocontrol and non-target effect of fractions and compound isolated from Streptomyces rimosus on the immature stages of filarial vector Culex quinquefasciatus Say (Diptera: Culicidae) and the compound interaction with Acetylcholinesterase (AChE1). Ecotoxicol Environ Saf. 2018;161:120–128.
  • Cui Q, Huang Y, Wang H, et al. Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environ Pollut. 2019;249:24–35.
  • Amirsoleimani A, Brion GA, Diene SM, et al. Prevalence and characterization of Staphylococcus aureus in wastewater treatment plants by whole genomic sequencing. Water Res. 2019;158:193–202.
  • McCarthy H, Rudkin JK, Black NS, et al. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol. 2015;5:1.
  • Ansari S, Rajesh KJ, Mishra SK, et al. Recent advances in Staphylococcus aureus infection: focus on vaccine development. Infection and Drug Resistce. 2019;13(12):1243–1255.
  • Bardiau M, Grégoire F, Muylaert A, et al. Enteropathogenic (EPEC), enterohaemorragic (EHEC) and verotoxigenic (VTEC) Escherichia coli in wild cervids. J Appl Microbiol. 2010;109(6):2214–2222.
  • Zgoda JR, Porter JR. A convenient microdilution method for screening natural products against bacteria and fungi. Pharm Biol. 2001;39:221–225.
  • Araujo MG, Hilario F, Nogueira LG, et al. Chemical constituents of the methanolic extract of leaves of Leiothrix spiralis Ruhland and their antimicrobial activity. Molecules. 2011;16(12):10479–10490.
  • Cioch M, Satora P, Skotniczny M, et al. Characterisation of antimicrobial properties of extracts of selected medicinal plants. Pol J Microbiol. 2017;66:463–472.
  • Das K, Tiwari RK, Shrivastava DK. Techniques for evaluation of medicinal plant products as antimicrobial agents: current methods and future trends. J Med Plants Res. 2010;4(2):104–111.
  • Fernebro J. Fighting bacterial infections—future treatment options. Drug Resist Updates. 2011;14:125–139. doi: 10.1016/j.drup.2011.02.001.
  • Teixeira B, Marques A, Ramos C, et al. European pennyroyal (Mentha pulegium) from Portugal: chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind Crops Prod. 2012;36:81–87.
  • Srivastava J, Chandra H, Nautiyal AR, et al. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. Biotechnology. 2014;4(5):451–460.
  • Guiotti AM, Cunha BG, Paulini MB, et al. Antimicrobial activity of conventional and plant-extract disinfectant solutions on microbial biofilms on a maxillofacial polymer surface. J Prosthet Dent. 2016;116(1):136–143. https://doi.org/10.1016/j.prosdent.2015.12.014.
  • Lee YS, Lee YJ, Park SN. Synergistic antimicrobial effect of Lonicera japonica and Magnolia obovata extracts and potential as a plant-derived natural preservative. J Microbiol Biotechnol. 2018;28(11):1814–1822. doi:10.4014/jmb.1807.07042.
  • Maisetta G, Batoni G, Caboni P, et al. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement Altern Med. 2019;19(1):82. doi:10.1186/s12906-019-2487-7.
  • Levillain J, Dubant G, Abrunhosa I, et al. Synthesis and properties of thiazoline based ionic liquids derived from the chiral pool. Chem Commun. 2003;23:2914–2915.
  • Baudequin C, Brégeon D, Levillain J, et al. Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron Asymmetry. 2005;16:3921–3945.
  • Qiu H, Jiang S, Liu X, et al. Novel imidazolium stationary phase for high-performance liquid chromatography. J Chromatogr, A. 2006;1116:46–50.
  • Messali M, Almtiri MN, Abderrahman B, et al. New Pyridazinium-based ionic liquids: an eco-friendly ultrasound-assisted synthesis, characterization and biological activity. S Afr J Chem. 2015;68:219–225.
  • Lee S, Chang W, Choi A, et al. Influence of ionic liquids on the growth ofEscherichia coli. Korean J Chem Eng. 2005;22:687–690.
  • Ventura S, Gonçalves A, Gonçalves F, et al. Assessing the toxicity on [C3mim] [Tf2N] to aquatic organisms of different trophic levels. Aquat Toxicol. 2010;96:290–297.
  • Aljuhani A, El-Sayed W, Sahu P, et al. Microwave-assisted synthesis of novel imidazolium, pyridiniumand pyridazinium-based ionic liquids and prediction of physico-chemical properties for their toxicity and antibacterial activity. J Mol Liq. 2018;249:747–753.
  • Albalawi A, El-Sayed W, Aljuhani A, et al. Microwave-assisted synthesis of some potential Bioactive imidazolium-based room temperature ionic liquids. Molecules. 2018;23:1727.
  • Fang B, Zhou C, Rao X. Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents. Eur J Med Chem. 2010;45:4388–4398.
  • Pernak J, Nawrot J, Kot M, et al. Ionic liquids based stored product insect antifeedants. RSC Adv. 2013;3:25019–25029.
  • Dalla Lana D, Donato R, Bundchen C, et al. Imidazolium salts with antifungal potential against multidrug-resistant dermatophytes. J Appl Microbiol. 2015;119:377–388.
  • Pendleton J, Gilmore B. The antimicrobial potential of ionic liquids: a source of chemical diversity for infection and biofilm control. Int J Antimicrob Agents. 2015;46:131–139.
  • Brari J, Thakur D. Insecticidal potential properties of citronellol derived ionic liquid against two major stored grain insect pests. J Entomol Zool Studies. 2016;4:365–370.
  • Goellner E, Schmitta A, Coutob J, et al. Larvicidal and residual activity of imidazolium salts against Aedes aegypti (Diptera: Culicidae). Pest Manag Sci. 2018;74:1013–1019.
  • Alahmadi S, Ibrahim R, Messali M, et al. Effect of aminopyridinium-based ionic liquids against larvae of Culex pipiens (Diptera: Culicidae). J Taibah Unive Science. 2020;14(1):863–872. doi:/10.1080/16583655.2020.1782601.
  • Ahmed AM, Shaalan EA, Aboul-Soud MAM, et al. Mosquito vectors survey in the AL-Ahsaa district of eastern Saudi Arabia. J Insect Sci. 2011;11(176):1–11.
  • Shaalan EA, Abdelsalam S, Elmenshawy O, et al. Mosquito vectors survey reveals new record of Culiseta subochrea in Al-Ahsa Oasis, Saudi Arabia. Asian Pacific J Tropical Disease. 2017;7(2):106–111. doi:10.12980/apjtd.7.2017D6-340.
  • Babeker AHI, Elhadi FEM, Alshahrani AM, et al. Adult mosquitoes entomological survey (Diptera: Culicidae) in Aseer region. Kingdom of Saudi Arabia. BioMed Res J. 2020;4(2):209–216.
  • Thielman AC, Hunter FF. A photographic key to adult female mosquito species of Canada (Diptera: Culicidae). Can J Arthropod Identification. 2007, no. 4.
  • Dehghan H, Sadraei J, Moosa-Kazemi SH, et al. A pictorial key for Culex pipiens complex (Diptera: Culicidae) in Iran. J Arthropod-Borne Dis. 2016;10(3):291–302.
  • de Meillon B, Sebastian A, Khan ZH. The duration of egg, larval and pupal stages of Culex pipiens fatigans in Rangoon, Burma. Bull World Health Organ. 1967;36(1):7–14.
  • Kiarie-Makara MW, Ngumbi PM, Lee D. Effects of temperature on the growth and development of Culex pipiens complex mosquitoes (Diptera: Culicidae). IOSR J Pharmacy Biol Sci. 2015;10(6):1–10.
  • Singh A, Zahra K. Lc50 assessment of cypermethrin in Heteropneustes fossilis: probit analysis. Int J Fisheries Aquatic Studies. 2017;5(5):126–130.
  • Satoh T, Hosokawa M. Organophosphates and their impact on the global environment. Neurotoxicology. 2000;21(1-2):223–227.
  • Aardema H, Meertens JH, Ligtenberg JJ, et al. Organophosphorus pesticide poisoning: cases and developments. Neth J Med. 2008;66(4):149–153.
  • Ansari M, Moraiet M, Ahmad S. Insecticides: impact on the environment and human health. In: Malik A, Grohmann E, Akhtar R, editors. Environmental deterioration and human health. Dordrecht: Springer; 2014. p. 99–123.
  • Lushchak VI, Matviishyn TM, Husak VV, et al. Pesticide toxicity: a mechanistic approach. EXCLI J. 2018;17:1101–1136. doi:10.17179/excli2018-1710.
  • Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol. 2015;60:537–559. doi:10.1146/annurev-ento-010814-020828.
  • Hakizimana E, Karema C, Munyakanage D, et al. Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda. Malar J. 2016;15(1):582. doi:10.1186/s12936-016-1618-6.
  • Sun DW, Wang GZ, Zeng LH, et al. Extensive resistance of Anopheles sinensis to insecticides in malaria-endemic areas of Hainan Province, China. Am J Trop Med Hyg. 2017;97(1):295–298. https://doi.org/10.4269/ajtmh.16-0723.
  • Menze BD, Wondji MJ, Tchapga W, et al. Bionomics and insecticides resistance profiling of malaria vectors at a selected site for experimental hut trials in central Cameroon. Malar J. 2018;17(1):317. doi:10.1186/s12936-018-2467-2.
  • Alikhan HA, Akram W, Lee S. Resistance to selected pyrethroid insecticides in the malaria mosquito, Anopheles stephensi (Diptera: Culicidae), from Punjab, Pakistan [published correction appears in J Med Entomol. 2018 May 4;55(3):769]. J Med Entomol. 2018;55(3):735–738. doi:10.1093/jme/tjx247.
  • Ingham VA, Anthousi A, Douris V, et al. A sensory appendage protein protects malaria vectors from pyrethroids. Nature. 2020;577(7790):376–380. doi:10.1038/s41586-019-1864-1.
  • Kaura T, Mewara A, Zaman K, et al. Utilizing larvicidal and pupicidal efficacy of Eucalyptus and neem oil against Aedes mosquito: an approach for mosquito control. Trop Parasitol. 2019;9(1):12–17. doi:10.4103/tp.TP_35_18.
  • Pavela R, Maggi F, Iannarelli R, et al. Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Trop. 2019;193:236–271.
  • Lame Y, Nukenine EN, Pierre DYS, et al. Laboratory evaluations of the fractions efficacy of Annona senegalensis (Annonaceae) leaf extract on immature stage development of Malarial and Filarial mosquito vectors. J Arthropod Borne Dis. 2015;9(2):226–237.
  • Abutaha N, Al-Mekhlafi FA, Farooq M. Target and nontarget toxicity of Cassia fistula fruit extract against Culex pipiens (Diptera: Culicidae), lung cells (BEAS-2B) and Zebrafish (Danio rerio) embryos. J Med Entomol. 2020;57(2):493–502. doi.org/10.1093/jme/tjz174.
  • de Carvalho G, de Andrade MA, de Araújo CN, et al. Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors. Environmental Science and Pollution Research. 2019;26(6):5514–5523. https://doi.org/10.1007/s11356-018-3905-y.
  • Youssefi MR, Tabari MA, Kazemi AES, et al. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the West Nile Vector Culex pipiens. Molecules. 2019;24:1867. doi:10.3390/molecules24101867.
  • Suman SD, Wang Y, Bilgrami LA, et al. Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes. Acta Trop. 2013;128(1):103–109.
  • El-Sheikh TMY, Fouda MA, Hassan MI, et al. Toxicological effects of some heavy metal ions on Culex pipiens L. (Diptera: Culicidae). Egypt Acad J Biol Sci. 2010;2(1):63–76.
  • Ramkumar G, Karthi S, Shivakumar MS, et al. Culex quinquefasciatus egg membrane alteration and ovicidal activity of Cipadessa baccifera (Roth) plant extracts compared to synthetic insect growth regulators. Res Rep Trop Med. 2019;10:145–151.
  • Wu S, Zeng L, Wang C, et al. Assessment of the cytotoxicity of ionic liquids on Spodoptera frugiperda 9 (Sf-9) cell lines via in vitro assays. J Hazard Mater. 2018;348:1–9. doi:10.1016/j.jhazmat.2018.01.028.
  • Govindarajan M, Sivakumar R. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae). Parasitol Res. 2014;113(4):1435–1449. doi:10.1007/s00436-014-3784-1.
  • Krishnappa K, Dhanasekaran S, Elumalai K. Larvicidal, ovicidal and pupicidal activities of Gliricidia sepium (Jacq.) (Leguminosae) against the malarial vector, Anopheles stephensi Liston (Culicidae: Diptera). Asian Pac J Trop Med. 2012;5(8):598–604. doi:10.1016/S1995-7645(12)60124-2.
  • Ibrahim R, Alahmadi SA, lmarwani A, et al. Do aminopyridinium-based ionic liquids promising to control Culex pipiens mosquitoes in the future? J Asia Pac Entomol.. 2020. https://doi.org/10.1016/j.aspen.2020.09.007.
  • Farnesi LC, Vargas H, Valle D, et al. Darker eggs of mosquitoes resist more to dry conditions: melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLoS Negl Trop Dis. 2017;11(10):e0006063. https://doi.org/10.1371/journal.pntd.0006063.
  • Clements AN. The Biology of Mosquitoes: Volume 1: Development, Nutrition and Reproduction. XV–XVI, 119–120; CABI, 1992.
  • Makhafola TJ, Samuel BB, Elgorashi EE, et al. Ochnaflavone and 7-O-methyl ether two antibacterial Biflavonoids from Ochna pretoriensis (ochnaceae). Nat Prod Commun. 2012;7(12):1601–1604.
  • Zawadzka K, Bernat P, Felczak A, et al. Antibacterial activity of high concentrations of carvedilol against Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents. 2018;51(3):458–467. doi:10.1016/j.ijantimicag.2017.12.014.