1,143
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The study of holmium substituted spinel ferrites for high frequency applications

, , , , , , , , & show all
Pages 463-471 | Received 05 Jul 2021, Accepted 29 Jul 2021, Published online: 14 May 2022

References

  • Farid HMT, Ahmad I, Ali I, et al. Study of spinel ferrites with addition of small amount of metallic elements. J Electroceram. 2019;42:57–66.
  • Kanwal M, Ahmad I, Meydan T, et al. Structural, magnetic and microwave properties of gadolinium-substituted Ca-Ba M-type hexagonal ferrites. J Electron Mater. 2018;47(9):5370–5377.
  • Wu F, Sun H, AJia IA, et al. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at∼ 350 nm via step quantum well structure design. J Phys D: Appl Phys. 2017;50(24):245101.
  • Munir S, Ahmad I, Laref A, et al. Effect of Nd-substitution on hexagonal ferrites for memory devices. J Appl Phys A: Mater Sci Process. 2020;126:722.
  • Ashiq MN, Naz F, Malana MA, et al. Role of Co–Cr substitution on the structural, electrical and magnetic properties of nickel nano-ferrites synthesized by the chemical co-precipitation method. Mater Res Bull. 2012;47:683–686.
  • Aravindh SA, Schwingenschloegl U, Roqan IS. Ferromagnetism in Gd doped ZnO nanowires: a first principles study. J Appl Phys. 2014;116(23):233906.
  • Ajia IA, Edwards PR, Pak Y, et al. Generated carrier dynamics in V-pit-enhanced InGaN/GaN light-emitting diode. ACS Photonics. 2018;5(3):820–826.
  • Alfaraj N, Mitra S, Wu F, et al. Photoinduced entropy of InGaN/GaN pin double-heterostructure nanowires. Appl Phys Lett. 2017;110(16):161110.
  • Muhammed MM, Alwadai N, Lopatin S, et al. High-efficiency InGaN/GaN quantum well-based vertical light-emitting diodes fabricated on β-Ga2O3Substrate. ACS Appl Mater Interfaces. 2017;9(39):34057–34063.
  • Flemban TH, Sequeira MC, Zhang Z, et al. Identifying the influence of the intrinsic defects in Gd-doped ZnO thin-films. J Appl Phys. 2016;119(6):065301.
  • Zhang Z, Schwingenschlögl U, Roqan IS. Possible mechanism for d0 ferromagnetism mediated by intrinsic defects. RSC Adv. 2014;4(92):50759–50764.
  • Kumar N, Singh RK, Satyapal HK. Structural, optical, and magnetic properties of non-stoichiometric lithium substituted magnesium ferrite nanoparticles for multifunctional applications. J Mater Sci: Mater Electron. 2020;31:9231–9241.
  • Aravindh SA, Schwingenschloegl U, Roqan IS. Defect induced d0 ferromagnetism in a ZnO grain boundary. J Chem Phys. 2015;143(22):224703.
  • Farid HMT, Ahmad I, Ali I, et al. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites. J Magn Magn Mater. 2017;434:143–150.
  • Limin D, Zhidong H, Yaoming Z, et al. Preparation and sinterability of Mn-Zn ferrite powders by Sol-Gel method. J Rare Earths. 2006;24:54–56.
  • Ramay SM, Mahmood A, Alzayed NS, et al. Structural and magnetic properties of praseodymium substituted strontium-based spinel ferrites. J Mater Sci: Mater Electron. 2017;28:18656–18665.
  • Wang J, Li Y, Wu R, et al. X-band shielding properties of Mg-9Li matrix composite containing Ni0.4Zn0.4Co0.2Fe2O4 fabricated by multi-layer composite rolling. J Alloys Compd. 2020;843(202):156053.
  • Manzoor A, Khan MA, Khan MY, et al. Tuning magnetic and high frequency dielectric behavior in Li-Zn ferrites by Ho doping. Ceram Int. 2018;44(6):6321–6329.
  • Bibi K, Ali I, Farid MT, et al. Electric and dielectric properties of Holmium substituted spinel ferrites. J Mater Sci: Mater Electron. 2018;29:3744–3750.
  • Rezlescu N, Rezlescu E, Popa PD, et al. Comparative study between catalyst properties of simple spinel ferrite powders prepared by self-combustion route. Rom Rep Phys. 2013;65(4):1348–1356.
  • Almessiere MA, Slimani Y, Rehman S, et al. Synthesis of Dy-Y co-substituted manganese-zinc spinel nanoferrites induced anti-bacterial and anti-cancer activities: comparison between sonochemical and sol-gel auto-combustion methods. Mater Sci Eng C. 2020;116:111186.
  • George M, Ajeesha TL, Manikandan A, et al. Evaluation of Cu–MgFe2O4 spinel nanoparticles for photocatalytic and antimicrobial activates. J Phys Chem Solids. 2021;153:110010.
  • Asiri S, Güner S, Korkmaz AD, et al. Magneto-optical properties of BaCryFe12−yO19 (0.0 ≤ y ≤ 1.0) hexaferrites. J Magn Magn Mater. 2018;451:463–472.
  • Trukhanov SV, Trukhanov AV, Turchenko VA, et al. Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range. J Alloys Compd. 2016;689:383–393.
  • Rhein F, Karmazin R, Krispin M, et al. Enhancement of coercivity and saturation magnetization of Al3þ substituted M-type Sr-hexaferrites. J Alloys Compd. 2017;690:979–985.
  • Venturini J, Zampiva RYS, Piva DH, et al. Conductivity dynamics of metallic-to-insulator transition near room temperature in normal spinel CoFe2O4 nanoparticles. J Mater Chem C. 2018;6:4720–4726.
  • Trukhanov SV, Trukhanov AV, Kostishyn VG, et al. Investigation of structure features and microwave absorption by doped barium hexaferrites. Dalton Trans. 2017;46:9010–9021.
  • Zhang T, Peng X, Li J, et al. Structural, magnetic and electromagnetic properties of SrFe12O19 ferrite with particles aligned in a magnetic field. J Alloys Compd. 2017;690:936–941.
  • Tabatabaie F, Fathi MH, Saatchi A, et al. Microwave absorption properties of Mn- and Ti-doped strontium hexaferrite. J Alloys Compd. 2009;470:332–335.
  • Yang Y, Wang F, Shao J, et al. Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0.4Sr0.6-xNdxFe12.0-x(Nb0.5Zn0.5)xO19. J Alloys Compd. 2018;765:616–623.
  • Almessiere MA, Slimani Y, Baykal A. Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite. Ceram Int. 2019;45:963–969.
  • Yousaf S, Ahmad I, Kanwal M, et al. Structural and electrical properties of Ba-substituted spinel ferrites. Mater Sci Semicond Process. 2021;122:105488.
  • Shooshtary S, Yousefi VM, Amini MM, et al. Magnetic and microwave absorption properties of Cu/Zr doped M-type Ba/Sr hexaferrites prepared via sol-gel auto-combustion method. J Alloys Compd. 2019;773:1187–1194.