2,761
Views
16
CrossRef citations to date
0
Altmetric
Research Article

On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order

, , ORCID Icon, & ORCID Icon
Pages 1-23 | Received 28 Jul 2021, Accepted 20 Nov 2021, Published online: 07 Feb 2022

References

  • Băleanu D, Mustafa OG, O'Regan D. A uniqueness criterion for fractional differential equations with Caputo derivative. Nonlinear Dyn. 2013;71(4):635–640.
  • Hamoud A. Existence and uniqueness of solutions for fractional neutral Volterra–Fredholm integro differential equations. Adv Theory Nonlinear Anal Appl. 2020;4(4):321–331.
  • Subramanian M, Baleanu D. Stability and existence analysis to a coupled system of Caputo type fractional differential equations with Erdélyi–Kober integral boundary conditions. Appl Math Inf Sci. 2020;14(3):415–424.
  • Muthaiah S, Baleanu D. Existence of solutions for nonlinear fractional differential equations and inclusions depending on lower-order fractional derivatives. Axioms. 2020;9(2):44.
  • Baleanu D, Mousalou A, Rezapour S. On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations. Boundary Value Problems. 2017;2017(1):1–9.
  • Aydogan MS, Baleanu D, Mousalou A, et al. On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Boundary Value Problems. 2018;2018(1):1–15.
  • Baleanu D, Rezapour S, Saberpour Z. On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Boundary Value Problems. 2019;2019(1):1–17.
  • Tariq KU, Zainab H, Seadawy AR, et al. On some novel optical wave solutions to the paraxial m-fractional nonlinear Schrödinger dynamical equation. Opt Quantum Electron. 2021;53(5):1–14.
  • Seadawy AR, Younis M, Baber MZ, et al. Diverse acoustic wave propagation to confirmable time–space fractional kp equation arising in dusty plasma. Commun Theor Phys. 2021;73(11):115004.
  • Younis M, Bilal M, Rehman S, et al. Perturbed optical solitons with conformable time-space fractional Gerdjikov–Ivanov equation. Math Sci. 2021;1–13. DOI:10.1007/s40096-021-00431-3.
  • Seadawy AR, Bilal M, Younis M, et al. Resonant optical solitons with conformable time-fractional nonlinear Schrödinger equation. Int J Modern Phys B. 2021;35(03):2150044.
  • Klafter J, Lim S, Metzler R. Fractional dynamics: recent advances. 2012.
  • Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. 1998.
  • Valério D, Machado JT, Kiryakova V. Some pioneers of the applications of fractional calculus. Fract Calculus Appl Anal. 2014;17(2):552–578.
  • Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul. 2011;16(3):1140–1153.
  • Kilbas AAA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Vol. 204 (North-Holland Mathematics Studies), Elsevier Science Inc.; 2006.
  • Baleanu D, Mohammadi H, Rezapour S. Analysis of the model of HIV-1 infection of CD4+ CD4 t-cell with a new approach of fractional derivative. Adv Differ Equ. 2020;2020(1):1–17.
  • Baleanu D, Etemad S, Pourrazi S, et al. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv Differ Equ. 2019;2019(1):1–21.
  • Rezapour S, Mohammadi H, Jajarmi A. A new mathematical model for Zika virus transmission. Adv Differ Equ. 2020;2020(1):1–15.
  • Subramanian M, Alzabut J, Baleanu D, et al. Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Adv Differ Equ. 2021;2021(1):1–46.
  • Duraisamy P, Gopal TN, Subramanian M. Analysis of fractional integro-differential equations with nonlocal Erdélyi–Kober type integral boundary conditions. Fract Calculus Appl Anal. 2020;23(5):1401–1415.
  • Younas U, Younis M, Seadawy AR, et al. Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative. Results Phys. 2021;20:103766.
  • Younis M, Seadawy AR, Baber M, et al. Analytical optical soliton solutions of the Schrödinger–Poisson dynamical system. Results Phys. 2021;27:104369.
  • Rizvi S, Seadawy AR, Younis M, et al. Optical dromions for perturbed fractional nonlinear Schrödinger equation with conformable derivatives. Optical Quantum Electron. 2021;53(8):1–13.
  • Miller KS, Ross B. An introduction to the fractional calculus and fractional differential equations. New York: Wiley; 1993.
  • Wei Z, Dong W. Periodic boundary value problems for Riemann–Liouville sequential fractional differential equations. Electron J Qual Theory Differ Equ. 2011;2011(87):1–13.
  • Wei Z, Li Q, Che J. Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative. J Math Anal Appl. 2010;367(1):260–272.
  • Baleanu D, Mustafa OG, Agarwal RP. On lp-solutions for a class of sequential fractional differential equations. Appl Math Comput. 2011;218(5):2074–2081.
  • Bai C. Impulsive periodic boundary value problems for fractional differential equation involving Riemann–Liouville sequential fractional derivative. J Math Anal Appl. 2011;384(2):211–231.
  • Boutiara A, Etemad S, Alzabut J, et al. On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv Differ Equ. 2021;2021(1):1–23.
  • Ahmad B, Luca R. Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions. Appl Math Comput. 2018;339:516–534.
  • Ntouyas SK, Al-Sulami HH. A study of coupled systems of mixed order fractional differential equations and inclusions with coupled integral fractional boundary conditions. Adv Differ Equ. 2020;2020(1):1–21.
  • Abbas S, Benchohra M, Graef JR. Coupled systems of Hilfer fractional differential inclusions in Banach spaces. Commun Pure Appl Anal. 2018;17(6):2479.
  • Arena P, Caponetto R, Fortuna L, et al. Chaos in a fractional order duffing system. Proceedings ECCTD, Budapest: Vol. 1259, 1997. p. 1262.
  • Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys Rev Lett. 2003;91(3):034101.
  • Faieghi M, Kuntanapreeda S, Delavari H, et al. Lmi-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 2013;72(1):301–309.
  • Nyamoradi N, Javidi M, Ahmad B. Dynamics of SVEIS epidemic model with distinct incidence. Int J Biomath. 2015;8(06):1550076.
  • Carvalho A, Pinto CM. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int J Dyn Control. 2017;5(1):168–186.
  • Matar M, Abbas M, Alzabut J, et al. Investigation of the p-laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv Differ Equ. 2021;2021(1):1–18.
  • Matar MM, Abu Skhail ES, Alzabut J. On solvability of nonlinear fractional differential systems involving nonlocal initial conditions. Math Methods Appl Sci. 2021;44(10):8254–8265.
  • Matar MM, Alzabut J, Jonnalagadda JM. A coupled system of nonlinear Caputo–Hadamard Langevin equations associated with nonperiodic boundary conditions. Math Meth Appl Sci. 2021;44(3):2650–2670.
  • Ahmad B, Nieto JJ. Sequential fractional differential equations with three-point boundary conditions. Comput Math Appl. 2012;64(10):3046–3052.
  • Ahmad B, Nieto JJ. Boundary value problems for a class of sequential integrodifferential equations of fractional order. J Funct Spaces Appl. 2013;2013:1–8. DOI:10.1155/2013/149659.
  • Cole KS. Electric conductance of biological systems. Cold Spring Harbor symposia on quantitative biology. Vol. 1, Cold Spring Harbor Laboratory Press; 1933. p. 107–116.
  • Djordjević VD, Jarić J, Fabry B, et al. Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng. 2003;31(6):692–699.
  • Wang L, Li MY. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math Biosci. 2006;200(1):44–57.
  • Arafa A, Rida S, Khalil M. Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection. Nonlinear Biomed Phys. 2012;6(1):1–7.
  • Wang S. Doubly nonlinear degenerate parabolic systems with coupled nonlinear boundary conditions. J Differ Equ. 2002;182(2):431–469.
  • Rossi JD. The blow-up rate for a system of heat equations with non-trivial coupling at the boundary. Math Meth Appl Sci. 1997;20(1):1–11.
  • Pao C. Finite difference reaction–diffusion systems with coupled boundary conditions and time delays. J Math Anal Appl. 2002;272(2):407–434.
  • Ahmad B, Alghanmi M, Alsaedi A, et al. Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions. Appl Math Lett. 2021;116:107018.
  • Hu S, Papageorgiou NS. Handbook of multivalued analysis. Dordrecht: Kluwer Academic Publishers; 1997.
  • Deimling K. Multivalued differential equations. Berlin: Walter de Gruyter; 1992.
  • Covitz HH, Nadler SB. Multi-valued contraction mappings in generalized metric spaces. Israel J Math. 1970;8(1):5–11.
  • Granas A, Dugundji J. Fixed point theory. 2013.
  • Yong Z, Jinrong W, Lu Z. Basic theory of fractional differential equations. 2016.
  • Losta A, Opial Z. Application of the kakutani-ky-fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map. Bull Acad Pol Sci, Sér Sci Math Astron Phys. 1965;13:781–786.
  • Kisielewicz M. Stochastic differential inclusions and applications. New York: Springer; 2013.
  • Castaing C, Valadier M. Convex analysis and measurable multifunctions. New York: Springer; 2008.