1,301
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Entropy generation of nanofluid flow in hexagonal microchannel

, , & ORCID Icon
Pages 75-88 | Received 31 Oct 2021, Accepted 16 Jan 2022, Published online: 08 Feb 2022

References

  • Aissa A, Slimani M, Mebarek-Oudina F, et al. Pressure-driven gas flows in micro channels with a slip boundary: a numerical investigation. Fluid Dynam Mater Process. 2020;16:147–159.
  • Hajji H, Kolsi L, Hassen W, et al. Finite element simulation of antigen-antibody transport and adsorption in a microfluidic chip. Physica E. 2018;104:177.
  • Hajji H, Kolsi L, Askri F, et al. Heat transfer and flow structure through a backward and forward-facing step micro-channels equipped with obstacles. Therm Sci. 2021;25:2483–2492.
  • Japara W, Che Sidika N, Matb S. A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel. Int Commun Heat Mass Transfer. 2018;99:62–81.
  • Li F, Zhu W, Hea H. Field synergy analysis on flow and heat transfer characteristics of nanofluid in microchannel with non-uniform cavities configuration. Int J Heat Mass Tran. 2019;144:118617.
  • Vasilev M, Abiev R, Kumar R. Effect of microchannel heat sink configuration on the thermal performance and pumping power. Int J Heat Mass Tran. 2019;141:845–854.
  • Rajiv, Kumar H, Singh Sokhal G. Effect of geometries and nanofluids on heat transfer and pressure drop in microchannels: a review. Mater Today: Proc. 2020;28:1841.
  • Zhu Q, Chang K, Chen J, et al. Characteristics of heat transfer and fluid flow in microchannel heat sinks with rectangular grooves and different shaped ribs. Alexandria Eng J. 2020;59:4593–4609.
  • Monavari A, Jamaatia J, Bahiraei M. Thermohydraulic performance of a nanofluid in a microchannel heat sink: Use of different microchannels for change in process intensity. J Taiwan Inst Chem E. 2021;125:1–14.
  • Ghachem K, Aich W, Kolsi L. Computational analysis of hybrid nanofluid enhanced heat transfer in cross flow micro heat exchanger with rectangular wavy channels. Case Stud Therm Eng. 2021;24:100822.
  • Abdollahi A, Mohammed H, Mokhtarpour S, et al. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alexandria Eng J. 2017;56:161–170.
  • Alkasmoul FS, Al-Asadi MT, Myers TG, et al. A practical evaluation of the performance of Al2O3-water, TiO2-water and CuO-water nanofluids for convective cooling. Int J Heat Mass Transf. 2018;126:639–651.
  • Vasefi S, Bazdidi-Tehrani F, Reyhani L. Assessment of mean and fluctuating velocity and temperature of CuO/water nanofluid in a horizontal channel: large eddy simulation. Numer Heat Transf. 2018;74:1520–1538.
  • Jung SY, Park H. Experimental investigation of heat transfer of Al2O3 nanofluid in a microchannel heat sink. Int J Heat Mass Tran. 2021;179:121729.
  • Ali AM, Angelino M, Rona A. Numerical analysis on the thermal performance of microchannel heat sinks with Al2O3 nanofluid and various fins. Appl Therm Eng. 2021;198:117458.
  • Chauhan P, Kumar R, Bharja R (s.d.). Optimization of the circular microchannel heat sink under viscous heating effect using entropy generation minimization method. Therm Sci Eng Prog. 2451–9049.
  • Bahiraei M, Monavari A, Naseri M, et al. Irreversibility characteristics of a modified microchannel heat sink operated with nanofluid considering different shapes of nanoparticles. Int J Heat Mass Tranf. 2020;151:119359.
  • Torabi M, Karimi N, Torabi M, et al. Generation of entropy in micro thermofluidic and thermochemical energy systems-A critical review. Int J Heat Mass Transf. 2020;163:120471.
  • Manay E, Akyürek E, Sahin B. Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys. 2018;9:615–624.
  • Bazdidi-Tehrani F, Vasefi S, Anvari A. Analysis of particle dispersion and entropy generation in turbulent mixed convection of CuO-Water nanofluid. Heat Transf Eng. 2017;40(1-2):1–14.
  • Hosseini S, Ghasemian M, Sheikholeslami M, et al. Entropy analysis of nanofluid convection in a heated porous microchannel under MHD field considering solid heat generation. Powder Technol. 2019;344:914–925.
  • Sheikhzadeh G, Aghaei A, Ehteram H, et al. Analytical study of parameters affecting entropy generation of nanofluid turbulent flow in channel and micro-channel. Therm Sci. 2016;20:2037–2050.
  • Khlifi B, Kalech B, Bouterra M, et al. Thermodynamic optimisation of rectangular and elliptical microchannels with nanofluids. Int J Exergy. 2018;25:252.
  • Shah F, Khan MI, Hayat T, et al. Theoretical and mathematical analysis of entropy generation in fluid flow subject to aluminum and ethylene glycol nanoparticles. Comput Methods Programs Biomed. 2019;182:105057–105057.
  • Mohammadi I, Ajam H. A theoretical study of entropy generation of the combustion phenomenon in the porous medium burner. Energy. 2019;188:116004.
  • Bahiraei M, Jamshidmofid M, Amani M, et al. Investigating exergy destruction and entropy generation for flow of a new nanofluid containing graphene–silver nanocomposite in a micro heat exchanger considering viscous dissipation. Powder Technol. 2018;336:298–310.
  • Sundar L, Mesfin S, Raman E, et al. Experimental investigation of thermo-physical properties, heat transfer, pumping power, entropy generation, and exergy efficiency of nanodiamond+Fe3O4/60:40% water-ethylene glycol hybrid nanofluid flow in a tube. Therm Sci Eng. 2021;21:100799.
  • Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982.
  • Bejan A. Entropy generation minimization. Boca Raton: CRC Press; 1996.
  • Sadeghi E, Bahrami M, Djilali N. Estimation of Nusselt number in microchannels of arbitrary cross section with constant axial heat flux. Heat Transf Eng. 2011;31(8).
  • Bahrami M, Yovanovich MM, Culham J. Pressure drop of fully-developed, laminar flow in microchannels of arbitrary cross-section. J Fluids Eng. 2006;128(5):1036–1044.
  • Al-Rashed A, Ranjbarzadeh R, Aghakhani S, et al. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Physica A. 2019;521:724–736.
  • Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54:4410–4428.
  • Hamilton R, Crosser O. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fund. 1962;1:187–191.
  • Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manage. 2011;52:789–793.
  • Ratts EB, Raut AG. Entropy generation minimization of fully developed internal flow With Constant heat flux. J Heat Transfer. 2004;126:656.