2,867
Views
16
CrossRef citations to date
0
Altmetric
Research Article

First principle study of optoelectronic and mechanical properties of lead-free double perovskites Cs2SeX6 (X = Cl, Br, I)

, , , , , , , & show all
Pages 155-162 | Received 12 Jul 2021, Accepted 26 Jan 2022, Published online: 16 Feb 2022

References

  • Gilani SS, Tariq S, Jamil MI, et al. Elucidating DFT study on structural, electronic, thermal and elastic properties of SrTcO3 by using GGA and mBJ approach. Chin J Phys. 2018;56:308–314.
  • Lorenz K, Miranda SMC, Alves E, et al. High pressure annealing of Europium implanted GaN. Mater Devices VII. 2012;8262:82620C.
  • Alfaraj N, Mitra S, Wu F, et al. Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires. Appl Phys Lett. 2017;110:161110.
  • Muhammed MM, Alwadai N, Lopatin S, et al. High-efficiency InGaN/GaN quantum well-based vertical light-emitting diodes fabricated on β-Ga2O3 substrate ACS Appl Mater Interfaces. 2017;9:34057.
  • Wu F, Sun H, AJia IA, et al. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350 nm via step quantum well structure design.J Phys D: Appl Phys. 2017;50:245101.
  • Tariq S, Mubarak A, Hamioud F, et al. Repercussion of pressure on thermodynamic, optoelectronic, thermoelectric and magneto-elastic rectitude of cubic LaFeO3: quantum DFT perspective. J Alloys Compd. 2020;831:154600.
  • Ajia IA, Edwards PR, Pak Y, et al. Generated carrier dynamics in V-Pit-enhanced InGaN/GaN light-emitting diode. ACS Photonics. 2017;5:820.
  • Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature. 2021;592:381–385.
  • Huang YT, Kavanagh SR, Scanlon DO, et al. Perovskite-inspired materials for photovoltaics and beyond – from design to devices. Nanotechnology. 2021;32:132004.
  • Miyasaka T, Kulkarni A, Kim GM, et al. Perovskite solar cells: can we go organic-free, lead-free, and dopant-free? Adv Eng Mat. 2020;10(13):1902500.
  • Ajia IA, Edwards PR, Pak Y, et al. Generated carrier dynamics in V-Pit-enhanced InGaN/GaN light-emitting diode. ACS Photonics. 2017;5(3):820–826.
  • Xin B, Pak Y, Mitra S, et al. Self-patterned CsPbBr3 nanocrystals for high-performance optoelectronics. ACS Appl Mater Interfaces. 2019;11(5):5223–5231.
  • Xin B, Alaal N, Mitra S, et al. Identifying carrier behavior in ultrathin indirect-bandgap CsPbX3 nanocrystal films for use in UV/visible-blind high-energy detectors. Small. 2020;16(43):2004513.
  • Saparov B, Sun JP, Meng W, et al. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chem Mater 2016;28:2315–2322.
  • Brik MG, Kityk IV, Phys J. Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A2XY6 cubic crystals (A = K, Cs, Rb, Tl; X = tetravalent cation, Y = F, Cl, Br, I). Chem Solids. 2011;72:1256–1260.
  • Kour R, Arya S, Verma S, et al. Potential substitutes for replacement of lead in perovskite solar cells: a review. Glob Chall. 2019;3(11):1900050.
  • Bagnall K, Laidler J, Stewart MAA. Americium chloro-complexes. J Chem Soc A. 1968;1:133–136.
  • Morss L, Fuger J. Preparation and crystal structures of dicesium berkelium hexachloride and dicesium sodium berkelium hexachloride. Norg Chem. 1969;8:1433–1439.
  • McClure ET, Ball MR, Windl W, et al. Cs2AgBiX6(X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem Mater. 2016;28:1348–1354.
  • Bekenstein Y, Dahl JC, Huang J, et al. The making and breaking of lead-free double perovskite nanocrystals of cesium silver–bismuth halide compositions. Nano Lett. 2018;18:3502–3508.
  • Ali MA, Alshahrani T, Murtaza G. Defective perovskites Cs2SeCl6 and Cs2TeCl6 as novel high temperature potential thermoelectric materials. Mater Sci Semicond Process. 2021;127:105728.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871.
  • Blaha P, Schwarz K, Madsen GK, et al. WIEN2k: an augmented plane wave + local orbitals program for calculating crystal properties; 2001.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 2009;102(22):226401–226404.
  • Togo A, Tanaka I. First principles phonon calculations in materials science. Scr Mater. 2015;108:1–5.
  • Fedorovskiy AE, Drigo NA, Nazeeruddin KM. The role of Goldschmidt's tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Methods. 2019;1:1900426.
  • Sabir B, Murtaza G, Mahmood Q, et al. First principles investigations of electronics, magnetic, and thermoelectric properties of rare earth based PrYO3 (Y = Cr, V) perovskites. Current Appl Phys. 2017;17:1539–1546.
  • Karki B, Ackland G, Crain J. Elastic instabilities in crystals from ab initio stress-strain relations. J Phys Condens Matter. 1997;9(41):8579.
  • Roknuzzaman M, Ostrikov K, Wang H, et al. Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci Rep. 2017;7:14025.
  • Mahmood Q, Ghrib T, Rached A, et al. Probing of mechanical, optical and thermoelectric characteristics of double perovskites Cs2GeCl/Br6 by DFT method. Mater Sci Semicond Process. 2020;112:105009.
  • Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B. 1992;46:6131.
  • Cheng HC, Yu CF, Chen WH. First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystals. J Alloys Compd. 2013;546:286–295.
  • Anderson OL. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids. 1963;24:909.
  • Hassan M, Arshad I, Mahmood Q. Computational study of electronic, optical and thermoelectric properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites. Semicond Sci Technol. 2017;32:115002.
  • Hossain MM, Ali MA, Uddin MM, et al. Origin of high hardness and optoelectronic and thermo-physical properties of boron-rich compounds B6X (X = S, Se): a comprehensive study via DFT approach. J Appl Phys. 2021;129:175109.
  • Slack GA. Solid state physics. In Seitz F, Turnbull D, Ehrenreich H, editors. New York: Academic; 1979. Vol. 34, p. 1–71.
  • Chen XQ, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallic. 2011;19:1275.
  • Ali MA, Hossain MM, Hossain MA, et al. Recently synthesized (Zr1-xTix)2AlC (0 ≤ x ≤ 1) solid solutions: theoretical study of the effects of M mixing on physical properties. J Alloys Compd. 2018;743:146.
  • Ali MA, Hossain MM, Jahan N, et al. Newly synthesized Zr2AlC, Zr2 (Al0.58Bi0.42)C, Zr2 (Al0.2Sn0.8)C, and Zr2 (Al0.3Sb0.7)C MAX phases: A DFT based first-principles study. Comput Mater Sci. 2017;131:139.
  • Donnell MO, Jaynes ET, Miller JG. Kramers–Kronig relationship between ultrasonic attenuation and phase velocity. J Acoust Soc Am. 1981;69:696.
  • Slavney AH, Hu T, Lindenberg AM, et al. A Bismuth-Halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc. 2016;138:2138–2141.
  • Penn DR. Wave-number-dependent dielectric function of semiconductors. Phys Rev. 1962;128:2093.
  • Cai MQ, Yin Z, Zhang MS. First-principles study of optical properties of barium titanate. Appl Phys Lett. 2003;83:2805.