1,738
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental and kinetic studies on co-digestion of agrifood and sewage sludge for biogas production

, , &
Pages 147-154 | Received 23 Oct 2021, Accepted 26 Jan 2022, Published online: 09 Feb 2022

References

  • Sharma A, Singh G, Arya SK. Biofuel from rice straw. J Cleaner Prod. 2020;277;1–20. Elsevier Ltd. doi:10.1016/j.jclepro.2020.124101.
  • Maroušek J. Pretreatment of sunflower stalks for biogas production. Clean Technol Environ Policy. 2013;15(4):735–740. doi:10.1007/s10098-012-0548-4.
  • Zheng Y, Zhao J, Xu F, et al. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci. 2014;42(1):35–53. doi:10.1016/j.pecs.2014.01.001.
  • Kumar V, Kumar P, Kumar P, et al. Anaerobic digestion of azolla pinnata biomass grown in integrated industrial effluent for enhanced biogas production and COD reduction: optimization and kinetics studies. Environ Technol Innov. 2020;17:100627, 1–12. doi:10.1016/j.eti.2020.100627.
  • Zhong W, Zhang Z, Luo Y, et al. Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol. 2011;102(24):11177–11182. doi:10.1016/j.biortech.2011.09.077.
  • Zhang X, Chen J, Li J. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association. Chemosphere. 2020;251. doi:10.1016/j.chemosphere.2020.126360.
  • Li Y, Zhang R, Liu G, et al. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol. 2013;149:565–569. doi:10.1016/j.biortech.2013.09.063.
  • Elsayed M, Andres Y, Blel W, et al. Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Convers Manage. 2016;117:538–547. doi:10.1016/j.enconman.2016.03.064.
  • Park KY, Jang HM, Park MR, et al. Combination of different substrates to improve anaerobic digestion of sewage sludge in a wastewater treatment plant. Int Biodeterior Biodegrad. 2016;109:73–77. doi:10.1016/j.ibiod.2016.01.006.
  • Shah FA, Mahmood Q, Rashid N, et al. Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renewable Sustainable Energy Rev. 2015;42:627–642. doi:10.1016/j.rser.2014.10.053.
  • Kasinath A, Fudala-Ksiazek S, Szopinska M, et al. Biomass in biogas production: pretreatment and codigestion. Renewable Sustainable Energy Rev. 2021;150:111509. doi:10.1016/j.rser.2021.111509.
  • Liew ZK, Chan YJ, Ho ZT, et al. Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): performance and kinetic evaluation. Renewable Energy. 2021;179:766–777. doi:10.1016/j.renene.2021.07.073.
  • Potdukhe RM, Sahu N, Kapley A, et al. Co-digestion of waste activated sludge and agricultural straw waste for enhanced biogas production. Bioresour Technol Rep. 2021;15(July):100769. doi:10.1016/j.biteb.2021.100769.
  • Prasertsan P, Leamdum C, Chantong S, et al. Enhanced biogas production by co-digestion of crude glycerol and ethanol with palm oil mill effluent and microbial community analysis. Biomass Bioenergy. 2021;148(January):106037. doi:10.1016/j.biombioe.2021.106037.
  • Matheri AN, Ntuli F, Ngila JC, et al. Quantitative characterization of carbonaceous and lignocellulosic biomass for anaerobic digestion. Renewable Sustainable Energy Rev. 2018;92(June 2017):9–16. doi:10.1016/j.rser.2018.04.070.
  • Wang X, Lu X, Li F, et al. Effects of temperature and carbon-Nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PLoS ONE. 2014;9(5):1–7. doi:10.1371/journal.pone.0097265.
  • André L, Pauss A, Ribeiro T. Solid anaerobic digestion: state-of-art, scientific and technological hurdles. Bioresour Technol. 2018;247(September):1027–1037. doi:10.1016/j.biortech.2017.09.003.
  • Sidra IK, Shehrbno A, Tamour AC, et al. Production of biogas by the co-digestion of cow dung and crop residue at University of the punjab, lahore, Pakistan. Afr J Environ Sci Technol. 2018;12(2):91–95. doi:10.5897/ajest2017.2446.
  • Carrier M, Loppinet-Serani A, Denux D, et al. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 2011;35(1):298–307. doi:10.1016/j.biombioe.2010.08.067.
  • Zhang R, Zhang Z. Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresour Technol. 1999;68(3):235–245. doi:10.1016/S0960-8524(98)00154-0.
  • Rani P, Pathak VV, Bansal M. Co-digestion of wheat straw and animal manure pretreated with calcium hydroxide for biomethane production: kinetic study. Curr Res Green Sustainable Chem. 2021;4(June):100145. doi:10.1016/j.crgsc.2021.100145.
  • Dębowski M, Janczukowicz W, Zielin M. Biodegradability evaluation of dairy effluents originated in selected sections of dairy production. Bioresour Technol . 2008;99:4199–4205. doi:10.1016/j.biortech.2007.08.077.
  • Altas L. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J Hazard Mater. 2009;162:1551–1556. doi:10.1016/j.jhazmat.2008.06.048.
  • Bastiaens B, Van den Broeck R, Appels L, et al. Evaluation of the effects of low energetic microwave irradiation on anaerobic digestion. J Environ Manag. 2017;202:69–83. doi:10.1016/j.jenvman.2017.06.062.
  • Rajput AA, Zeshan, Visvanathan C. Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. J Environ Manag. 2018;221(April):45–52. doi:10.1016/j.jenvman.2018.05.011.
  • Hamidreza S, Hons G. Wheat straw biorefinery for agricultural waste valorisation. Green Materials. 2020;8:60–67. doi:10.1680/jgrma.19.00048.
  • Ahmad S, Pathak VV, Kothari R, et al. Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: opportunities and challenges. Biofuels. 2018;9(5):575–594. doi:10.1080/17597269.2017.1378991.
  • Bhatia SK, Jagtap SS, Bedekar AA, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol. 2020;300(October):1142–1156. doi:10.1016/j.biortech.2019.122724.
  • Neshat S, Mohammadi M, Najafpour G, et al. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable Sustainable Energy Rev. 2017;79;308–322. doi:10.1016/j.rser.2017.05.137.
  • Satyanarayan S, Murkute P,  Ramakant. Biogas production enhancement by brassica compestries amendment in cattle dung digesters. Biomass Bioenergy. 2008; 32(3):210–215. doi:10.1016/j.biombioe.2007.09.008.
  • Muhammad nasir I, Mohd ghazi Ti. Pretreatment of lignocellulosic biomass from animal manure as a means of enhancing biogas production. Eng Life Sci. 2015;15(7):733–742. doi:10.1002/elsc.201500019.
  • Dubber D, Gray NF. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J Environ Sci Health - Part A Toxic/Hazard Subst Environ Eng. 2010;45(12):1595–1600. doi:10.1080/10934529.2010.506116.
  • Fang C, Huang R, Dykstra CM, et al. Energy and nutrient recovery from sewage sludge and manure via anaerobic digestion with hydrothermal pretreatment. Environ Sci Technol. 2020;54(2):1147–1156. doi:10.1021/acs.est.9b03269.
  • El-Mashad HM, Zhang R. Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol. 2010;101(11):4021–4028. doi:10.1016/j.biortech.2010.01.027.