1,941
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Comparison of radiation shielding and elastic properties of germinate tellurite glasses with the addition of Ga2O3

, , , , , & show all
Pages 183-192 | Received 19 Nov 2021, Accepted 01 Feb 2022, Published online: 17 Feb 2022

References

  • Forman P. The discovery of the diffraction of X-rays by crystals; a critique of the myths. Arch Hist Exact Sci. 1969;6(1):38–71.
  • Tyagi G, Singhal A, Routroy S, et al. Radiation shielding concrete with alternate constituents: an approach to address multiple hazards. J Hazard Mater. 2021;404:124201.
  • Olarinoye IO, Alomairy S, Sriwunkum C, et al. Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations. Phys Scr. 2021;96(6):065308.
  • Kebaili I, Znaidia S, Alzahrani JS, et al. Ge 20 Se 80-x Bi x (x ≤ 12) chalcogenide glasses for infrared and gamma sensing applications: structural, optical and gamma attenuation aspects. J Mater Sci: Mater Electron. 2021:1–14.
  • Al-Buriahi MS, Somaily HH, Alalawi A, et al. Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide. J Inorg Organomet Polym. 2020. doi:10.1007/s10904-020-01750-z
  • Al-Buriahi MS, Eke C, Alomairy S, et al. Micro-hardness and gamma-ray attenuation properties of lead iron phosphate glasses. J Mater Sci: Mater Electron. 2021:1–11.
  • Al-Buriahi MS, Alajerami YSM, Abouhaswa AS, et al. Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J Non-Cryst Solids. 2020;544:120171. doi:10.1016/j.jnoncrysol.2020.120171
  • Abouhaswa AS, Mhareb MHA, Alalawi A, et al. Physical, structural, optical, and radiation shielding properties of B2O3–20Bi2O3–20Na2O2–Sb2O3 glasses: role of Sb2O3. J Non-Cryst Solids. 2020;543:120130. doi:10.1016/j.jnoncrysol.2020.120130
  • Al-Buriahi MS, Singh VP. Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. J Aust Ceram Soc. 2020;56:1127–1133. doi:10.1007/s41779-020-00457-1
  • Divina R, Naseer KA, Marimuthu K, et al. Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium. J Mater Sci: Mater Electron. 2020;31:21486–21501. doi:10.1007/s10854-020-04662-3
  • Al-Buriahi MS, Bakhsh EM, Tonguc B, et al. Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram Int. 2020. doi:10.1016/j.ceramint.2020.04.240
  • Al-Buriahi MS, Tonguç B, Perişanoğlu U, et al. The impact of Gd2O3 on nuclear safety proficiencies of TeO2–ZnO–Nb2O5 glasses: a GEANT4 Monte Carlo study. Ceram Int. 2020. doi:10.1016/j.ceramint.2020.03.110
  • Alrowaili ZA, Ali AM, Al-Baradi AM, et al. A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Opt Quantum Electron. 2022;54(2):1–19.
  • Tamam N, Alrowaili ZA, Elqahtani ZM, et al. Significant influence of Cu content on the radiation shielding properties of Ge–Se–Te bulk glasses. Radiat Phys Chem. 2022;109981.
  • Çağlar İ, Cengiz GB, Bilir G. Gamma radiation shielding properties of some binary tellurite glasses. J Non-Cryst Solids. 2021;574:121139.
  • Lakshminarayana G, Kebaili I, Dong MG, et al. Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth boro-tellurite glass systems. J Mater Sci. 2020;55:5750–5771. doi:10.1007/s10853-020-04446-4
  • Rammah YS, Olarinoye IO, El-Agawany FI, et al. Evaluation of radiation shielding capacity of vanadium–tellurite–antimonite semiconducting glasses. Opt Mater. 2021;114:110897. doi:10.1016/j.optmat.2021.110897
  • Olarinoye IO, El-Agawany FI, El-Adawy A, et al. Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceram Int. 2020;46(14):23134–23144. doi:10.1016/j.ceramint.2020.06.093
  • Rammah YS, Olarinoye IO, El-Agawany FI, et al. Photon, proton, and neutron shielding capacity of optical tellurite-vanadate glass systems: theoretical investigation. Radiat Phys Chem. 2021;184:109443. doi:10.1016/j.radphyschem.2021.109443
  • Środa M, Świontek S, Fraś D. Effect of Ga2O3 on the structure and properties of TeO2–GeO2 glass doped with Pr3+. J Non-Cryst Solids. 2019;526:119699.
  • Makishima A, Mackenzie JD. Direct calculation of Young’s modulus of glass. J Non-Cryst Solids. 1973;12(1):35–45.
  • Makishima A, Mackenzie JD. Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. J Non-Cryst Solids. 1975;17(2):147–157.
  • Agostinelli S, Allison J, al Amako K, et al. GEANT4 – a simulation toolkit. Nucl Instrum Methods Phys Res Sect A. 2003;506(3):250–303.
  • Alzahrani JS, Alothman MA, Eke C, et al. Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Comput Mater Sci. 2021;196:110566.
  • Alzahrani JS, Alrowaili ZA, Saleh HH, et al. Synthesis, physical and nuclear shielding properties of novel Pb–Al alloys. Prog Nucl Energy. 2021;142:103992.
  • Boukhris I, Kebaili I, Al-Buriahi MS, et al. Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations. Ceram Int. 2020;46(15):24435–24442. doi:10.1016/j.ceramint.2020.06.226
  • Al-Buriahi MS, Olarinoye IO, Alshahrani B, et al. Optical and gamma-ray absorption features of newly developed P2O5−Ce2O3−La2O3 glass system. Appl Phys A. 2021;127(11):1–9.
  • Al-Buriahi MS, Tonguc BT. Study on gamma-ray buildup factors of bismuth borate glasses. Appl Phys A. 2019;125:482. doi:10.1007/s00339-019-2777-4
  • Alzahrani, Jamila S, Alrowaili ZA, Saleh HH, et al. A significant role of Tb2O3 on the optical properties and radiation shielding performance of Ga2O3–B2O3–Al2O3–GeO2 glasses. J Inorg Organomet Polym Mater. 2021:1–13.
  • Alshahrani B, Eke C, Alrowaili ZA, et al. Gamma, neutron, and charged-particles shielding properties of tellurite glass system containing Sb2O3 and V2O5. J Mater Sci: Mater Electron. 2021:1–12.
  • Al-Buriahi MS, Mann KS. Radiation shielding investigations for selected tellurite-based glasses belonging to the TNW system. Mater Res Exp. 2019;6(10):105206. doi:10.1088/2053-1591/ab3f85
  • Creagh DC, Hubbell JH. Problems associated with the measurement of X-ray attenuation coefficients. I. Silicon. Report of the international union of crystallography X-ray attenuation project. Acta Crystallogr Sec A: Found Crystallogr. 1987;43(1):102–112.
  • Şakar E, Özpolat ÖF, Alım B, et al. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem. 2020;166:108496.
  • Al-Buriahi MS, Sriwunkum C, Arslan H, et al. Investigation of barium borate glasses for radiation shielding applications. Appl Phys A. 2020;126(1):1–9.
  • Tonguc BT, Arslan H, Al-Buriahi MS. Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiat Phys Chem. 2018;153:86–91.
  • Al-Buriahi MS, Tonguc BT. Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat Phys Chem. 2020;166:108507.
  • Speit B. Radiation-shielding glasses providing safety against electrical discharge and being resistant to discoloration. U.S. Patent 5,073,524, issued December 17, 1991.
  • Bashter II. Calculation of radiation attenuation coefficients for shielding concretes. Ann Nucl Energy. 1997;24(17):1389–1401.
  • Wood J. Computational methods in reactor shielding. New York: Pergamon Press; 2013.
  • Kaplan MF. Concrete radiation shielding. New York: John Wiley and Sons, Inc; 1989.
  • Chilton A, Shultis JK, Faw R. Principles of radiation shielding. Prentice Hall Inc; 1984, US.
  • Profio AE. Radiation shielding and dosimetry. New York: John Wiley & Sons, Inc; 1979.
  • Al-Buriahi MS, Singh VP, Alalawi A, et al. Mechanical features and radiation shielding properties of TeO2–Ag2O-WO3 glasses. Ceram Int. 2020. doi:10.1016/j.ceramint.2020.03.091
  • Piotrowski T. Neutron shielding evaluation of concretes and mortars: a review. Constr Build Mater. 2021;277:122238.