1,500
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Insight into fermentable sugar recovery process from sugarcane bagasse: in silico elucidation of enzymatic hydrolysis and techno-economic assessment

, , & ORCID Icon
Pages 204-213 | Received 23 Nov 2021, Accepted 06 Feb 2022, Published online: 23 Feb 2022

References

  • Manzanares P. The role of biorefinering research in the development of a modern bioeconomy. Acta Innov. 2020;37:47–56.
  • Hingsame M, Jungmeier G. Biorefineries. In: Lago C, Caldes N, Lechon Y, editors. The role of bioenergy in the bioeconomy. Spain: Academic Press; 2019. p. 179–222.
  • Hofsetz K, Silva MA. Brazilian sugarcane bagasse: energy and non-energy consumption. Biomass Bioenergy 2012;46:564–573.
  • Mesa L, Nancy L, Cristóbal C, et al. Techno-economic evaluation of strategies based on two steps organosolv pre-treatment and enzymatic hydrolysis of sugarcane bagasse for ethanol production. Renew Energy. 2016;86:270–279.
  • Silveira MHL, Morais ARC, da Costa Lopes AM, et al. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. Chem Sus Chem. 2015;8(20):3366–3390.
  • Cherubini F, Ulgiati S. Crop residues as raw materials for biorefinery systems – a LCA case study. Appl Energy. 2010;87(1):47–57.
  • Ramos LP, Suota MJ, Fockink DH, et al. Enzymes and biomass pretreatment. In: Filho E.X.F., Moreira l.R.de S., Ximenes E. de A., et al., editors. Recent advances in bioconversion of lignocellulose to biofuels and value-added chemicals within the biorefinery concept. Elsevier; 2020. p. 61–100.
  • Gama FM, Teixeira JA, Mota M. Cellulose morphology and enzymatic reactivity: a modified solute exclusion technique. Biotechnol Bioeng. 1994;43:381–387.
  • Tanaka M, Makoto I, Ryuichi M, et al. Effect of pore size in substrate and diffusion of enzyme on hydrolysis of cellulosic materials with cellulases. Biotechnol Bioeng. 1988;32:698–706.
  • Wang M, Dayun Z, Yanqin W, et al. Bioethanol production from cotton stalk: a comparative study of various pre-treatments. Fuel. 2016;184:527–532.
  • Mendes FM, Germano S, Walter C, et al. Enzymatic hydrolysis of chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnol Prog. 2011;27:395–401.
  • Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pre-treatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–686.
  • Gasteiger E, Christine H, Alexandre G, et al. Protein identification and analysis tools on the ExPASy server. In: Walker J.M., editor. The proteomics protocols handbook. Totowa,NJ: Humana Press; 2005. p. 571–607.
  • Ikai A. Thermostability and aliphatic index of globular proteins. J Biochem. 1980;88:1895–1898.
  • Guruprasad K, Reddy B, Madhusudan WP. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel. 1990;4:155–116.
  • Geourjon C, Gilbert D. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics. 1995;11:681–684.
  • Altschul SF, Thomas LM, Alejandro AS, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402.
  • Berman HM, John W, Zukang F, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–242.
  • Mazur O, Jochen Z. Apo-and cellopentaose-bound structures of the bacterial cellulose synthase subunit BcsZ. J Biol Chem. 2011;286:17601–17606.
  • Laskowski RA, Malcolm WM, David SM, et al. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–291.
  • Bowie JU, Roland L, David E. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253:164–170.
  • Wass MN, Lawrence AK, Michael JES. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 2010;38:W469–W473.
  • Pettersen EF, Thomas DG, Conrad CH, et al. UCSF chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612.
  • Yan Z, Jihong L, Sandra C, et al. Lignin relocation contributed to the alkaline pre-treatment efficiency of sweet sorghum bagasse. Fuel. 2015;158:152–158.
  • Rezende CA, Marisa AL, Priscila M, et al. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels. 2011;4:54.
  • Pandey KK, Pitman JA. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad. 2003;52:151–160.
  • Colom X, Carrillo F, Nogués F, et al. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab. 2003;80:543–549.
  • Hinterstoisser B, Lennart S. Two-dimensional step-scan FTIR: a tool to unravel the OH-valency-range of the spectrum of cellulose I. Cellulose. 1999;6:251–263.
  • Cao Y, Huimin T. Structural characterization of cellulose with enzymatic treatment. J Mol Struct. 2004;705:189–193.
  • Mandal A, Chakrabarty D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym. 2011;86:1291–1299.
  • Sun JX, Sun XF, Sun RC, et al. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym. 2004;56:195–204.
  • Marbach D, Thomas S, Claudio M, et al. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J Comput Biol. 2009;16:229–239.
  • Fiser A, Richard KGD, Andrej S. Modeling of loops in protein structures. Protein Sci. 2000;9:1753–1773.
  • Martí-Renom MA, Ashley CS, András F, et al. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325.