1,035
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magnetic chitosan membrane as an effective analytical tool for adsorptive removal of creatinine from biological samples

, , , , &
Pages 250-258 | Received 01 Jan 2022, Accepted 09 Feb 2022, Published online: 27 Feb 2022

References

  • Meng F, Seredych M, Chen C, et al. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano. 2018;12(10):10518–10528.
  • Gura V, Rivara MB, Bieber S, et al. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight. 2016;1:8.
  • Tharpa K, Mahabala P, Gurunath C, et al. New chemistry supporting portable solutions for end-stage renal disease dialysis treatment. J Artif Organs. 2020;23(1):47–53.
  • Maleki A, Ghamari N, Kamalzare MJRA. Chitosan-supported Fe3 O4 nanoparticles: a magnetically recyclable heterogeneous nanocatalyst for the syntheses of multifunctional benzimidazoles and benzodiazepines. RSC Adv. 2014;4(19):9416–9423.
  • Eivazzadeh-Keihan R, Maleki A, De La Guardia M, et al. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: A review. J Adv Res. 2019;18:185–201.
  • Maleki A, Aghaei M, Ghamari NJCL. Synthesis of benzimidazolo [2, 3–b] quinazolinone derivatives via a one-pot multicomponent reaction promoted by a chitosan-based composite magnetic nanocatalyst. Chem Lett. 2015;44(3):259–261.
  • Zarnegar Z, Safari JJ. The novel synthesis of magnetically chitosan/carbon nanotube composites and their catalytic applications. Int J Biol Macromol. 2015;75:21–31.
  • Lee M, Chen B-Y, Den WJAS. Chitosan as a natural polymer for heterogeneous catalysts support: a short review on its applications. Appl Sci. 2015;5(4):1272–1283.
  • Manohar A, Krishnamoorthi CJMC. Low Curie-transition temperature and superparamagnetic nature of Fe3O4 nanoparticles prepared by colloidal nanocrystal synthesis. Mater Chem Phys. 2017;192:235–243.
  • Reddy DHK, Yun Y-S. Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev. 2016;315:90–111.
  • Popławska M, Krawczyk H. Uraemic toxins generated in the presence of fullerene C60, carbon-encapsulated magnetic nanoparticles, and multiwalled carbon nanotubes. BioMed Res Int. 2013.
  • Albuquerque AS, Ardisson JD, Macedo W. A study of nanocrystalline NiZn-ferrite–SiO2 synthesized by sol–gel. J Magn Magn Mater. 1999;192(2):277–280.
  • Shen K, Wang J, Li Y, et al. Preparation of magnetite core–shell nanoparticles of Fe3O4 and carbon with aryl sulfonyl acetic acid. Mater Res Bull. 2013;48(11):4655–4660.
  • Amighian J, Karimzadeh E, Mozaffari M. The effect of Mn2+ substitution on magnetic properties of MnxFe3−xO4 nanoparticles prepared by coprecipitation method. J Magn Magn Mater. 2013;332:157–162.
  • Zhao F, Zhang B, Feng LJML. Preparation and magnetic properties of magnetite nanoparticles. Mater Lett. 2012;68:112–114.
  • Manohar A, Vijayakanth V, Hong R. Solvothermal reflux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J Mater Sci: Mater Electron. 2020;31(1):799–806.
  • Hasany S, Ahmed I, Rajan J, et al. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol. 2012;2(6):148–158.
  • Podstawka E, Światłowska M, Borowiec E, et al. Food additives characterization by infrared, Raman, and surface-enhanced Raman spectroscopies. J Raman Spectrosc. 2007;38(3):356–363.
  • Cooper R, Naclerio F, Allgrove J, et al. Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr. 2012;9(1):1–11.
  • Zhang Z, Xian J, Zhang C, et al. Degradation of creatinine using boron-doped diamond electrode: statistical modeling and degradation mechanism. Chemosphere. 2017;182:441–449.
  • Chen J-C, Kumar A, Chung H-H, et al. An enzymeless electrochemical sensor for the selective determination of creatinine in human urine. Sens Actuators, B. 2006;115(1):473–480.
  • Castro RMB. (2013). Desenvolvimento e aplicação de um biossensor para monitorização de creatinina, um biomarcador associado a doenças emergentes.
  • He Y, Zhang X, Yu H. Gold nanoparticles-based colorimetric and visual creatinine assay. Microchim Acta. 2015;182(11):2037–2043.
  • Subrahmanyam S, Piletsky SA, Piletska EV, et al. Bite-and-Switch’approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens Bioelectron. 2001;16(9-12):631–637.
  • Debus B, Kirsanov D, Yaroshenko I, et al. Two low-cost digital camera-based platforms for quantitative creatinine analysis in urine. Anal Chim Acta. 2015;895:71–79.
  • Mădăraş MB, Popescu IC, Ufer S, et al. Microfabricated amperometric creatine and creatinine biosensors. Anal Chim Acta. 1996;319(3):335–345.
  • Mai TTT, Ha PT, Pham HN, et al. Chitosan and O-carboxymethyl chitosan modified Fe3O4 for hyperthermic treatment. Adv Nat Sci: Nanosci Nanotechnol. 2012;3(1):015006.