755
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Opto-electro-structural properties of Ge-doped Sb65Se35 alloys

Pages 280-287 | Received 16 Dec 2021, Accepted 26 Feb 2022, Published online: 08 Mar 2022

References

  • Gao S, Hu Y, Wang L, et al. Simultaneously good thermal stability and low power consumption for Sb/In48.9Sb15.5Te35.6 multilayer composite film. J Non-Cryst Solids. 2021;567:120928.
  • Xu M, Lu Y, Li Z, et al. Compositional optimization of binary selenium-antimony films for low-power electrical and optical storage. J Alloys Compd. 2018;740:477–484.
  • Zou H, Zhu X, Hu Y, et al. Improving the thermal stability and phase change speed in Sb70Se30 films through Er doping. J Mater Sci Mater Electron. 2017;28:17719–17725.
  • Sun Z, Zhou J, Shin H-J, et al. Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5. Appl Phys Lett. 2008;93:241908.
  • Chen L, Song S, Song Z, et al. Sb52Se36Te12 material with high-temperature data retention coupled with rapid crystallization speed for phase change application. Appl Surf Sci. 2015;357:603–607.
  • Rao F, Song Z, Ren K, et al. Sn12Sb88 material for phase change memory. Appl Phys Lett. 2009;95:032105.
  • Hu Y, Li S, Lai T, et al. Al19Sb54Se27 material for high stability and high-speed phase-change memory applications. Scr Mater. 2013;69:61–64.
  • Eising G, Van Damme T, Kooi BJ. Unraveling crystal growth in GeSb phase-change films in between the glass-transition and melting temperatures. Cryst Growth Des. 2014;14:3392–3397.
  • Putero M, Coulet M-V, Muller C, et al. Ge-doped GaSb thin films with zero mass density change upon crystallization for applications in phase change memories. Appl Phys Lett. 2016;108:101909.
  • Zhang Z, Gu Y, Song S, et al. Investigation of Al-Sb-Se alloy for long data retention and low power consumption phase change memory application. J Appl Phys. 2014;116:074304.
  • Yoon S-M, Lee N-Y, Ryu S-O, et al. Sb-Se-based phase-change memory device with lower power and higher speed operations. IEEE Electron Device Lett. 2006;27:445–447.
  • Ji XL, Wu L, Zhou W, et al. High thermal stability Sb3Te-TiN2 material for phase change memory application. Appl Phys Lett. 2015;106:023118.
  • Shen X, Wang G, Wang RP, et al. Enhanced thermal stability and electrical behavior of Zn-doped Sb2Te films for phase change memory application. Appl Phys Lett. 2013;102:131902.
  • Matsunaga T, Yamada N. Structural investigation of GeSb2Te4: a high-speed phase-change material. Phys Rev B. 2004;69:104111.
  • Yousaf SA, Ikram M, Ali S. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells. J Colloid Interface Sci. 2018;527:172–179.
  • Ahmad SOA, Ashfaq A, Akbar MU, et al. Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. J Mater Chem C. 2021;9:14065–14092.
  • Salam W, Ikram M, Shahzadi I, et al. Doping dependent structural, optical, thermal and catalysis properties of synthesized cadmium sulfide nanoparticles. Nanosci Nanotechn Lett. 2018;10:1662–1670.
  • Zaidi AA, Rafique MS, Aslam S, et al. Effects of solvents on structural, optical and photovoltaic properties of photo anodes for dye-sensitized solar cells. Optik (Stuttg). 2020;200:163444.
  • Yousaf SA, Imran M, Ikram M, et al. The critical role of metal oxide electron transport layer for perovskite solar cell. Appl Nanosci. 2018;8:1515–1522.
  • Imran M, Ikram M, Anjum S, et al. Highly efficient hybrid bulk heterojunction organic solar cells integrating PbS nanoparticles. Nanosci Nanotechn Lett. 2018;10:1644–1650.
  • Chen Y, Wang G, Tian M, et al. Fast reversible laser-induced crystallization of Sb-rich Zn-Sb-Se phase change material with excellent stability. AIP Adv. 2015;5:077174.
  • Zou H, Zhu X, Hu Y, et al. Improving the thermal stability and phase change speed in Sb70Se30 films through Er doping. J Mater Sci Mater Electron. 2017;28:17719–17725.
  • Lu Y, Song S, Song Z, et al. Ga14Sb86 film for ultralong data retention phase-change memory. J Appl Phys. 2011;109:064503.
  • Lu Y, Song S, Shen X, et al. Phase change characteristics of Sb-rich Ga–Sb–Se materials. J Alloys Compd. 2014;586:669–673.
  • Liu R, Hu A, Zhao Z, et al. Zn-doped Sb70Se30 thin films with multiple phase transition for high storage density and low power consumption phase change memory applications. Scr Mater. 2020;178:324–328.
  • Liu G, Wu L, Zhu M, et al. The investigations of characteristics of Sb2Te as a base phase-change material. Solid-State Electron. 2017;135:31–36.
  • Saleh SA. Synthesis and characterization of Sb65Se35-xGex alloys. Mater Sci Appl. 2011;2:950–956.
  • Kang TD, Sirenko A, Park J-W, et al. Investigation of the structural and optical properties of Ge-doped SbTe films with various Sb:Te ratios. J Electrochem Soc. 2011;158:H249.
  • Prokhorov E, Mendoza-Galván A, González-Hernández J, et al. Effects of Ge addition on the optical and electrical properties of eutectic Sb70Te30 films. J Non-Cryst Solids. 2007;353:2125.
  • Denton AR, Ashcroft NW. Vegard’s law. Phys Rev A At Mol Opt Phys. 1991;43:3161–3164.
  • González-Hernández J, Chao BS, Strand D, et al. Crystallization studies of Ge: Sb: Te optical memory materials. Appl Phys Comm. 1992;11:557–581.
  • Cao Y, Zhu P, Shi W, et al. Correlation between X-ray diffraction pattern and microstructure of surface of E690 high-strength steel induced by laser-shock processing. Vacuum. 2022;195:110595.
  • Gu Y, Song S, Song Z, et al. Phase-change material Ge0.61Sb2Te for application in high-speed phase change random access memory. Appl Phys Lett. 2013;102:103110.
  • Saleh SA. Preparation of degenerate n-type Sb65GexSe35-x alloys with a small grain size and their thermoelectric properties. J Phys. 2013;2:4–11.
  • Ameer S, Jindal K, Sharma S, et al. Structural, morphological and optical properties of BiFe0.99Cr0.01O3 thin films. Vacuum. 2018;158:166–171.
  • Shi X, Feng X, Teng J, et al. Effect of laser shock peening on microstructure and fatigue properties of thin-wall welded Ti-6A1-4V alloy. Vacuum. 2021;184:109986.
  • Saleh SA. Study of microstructural, electrical and dielectric properties of La0.9Pb0.1MnO3 and La0.8Y0.1Pb0.1MnO3 ceramics. Guigoz Sci Rev. 2019;5:33–44.
  • Muneeswaran M, Lee SH, Kim DH, et al. Structural, vibrational, and enhanced magneto-electric coupling in Ho-substituted BiFeO3. J Alloys Compd 2018;750:276–285.
  • Guo S, Huang T, Xu LP, et al. Observation of an intermediate phase in tungsten doped Sb2Te phase change thin films by temperature dependent measurements of structural, optical, and electronic properties. J Phys D: Appl Phys. 2016;49:265105.
  • Beekman C, Reijnders AA, Oh YS, et al. Raman study of the phonon symmetries in BiFeO3 single crystals. Phys Rev B. 2012;86:020403(R).
  • M.N. Iliev, Abrashev M. V., Mazumdar D., Shelke V., Gupta A., Polarized Raman spectroscopy of nearly tetragonal BiFeO3 thin films Phys Rev B 82 (2010) 014107.
  • Saleh SA, Al-Hajry A, Ali HM. Structural and optical properties of Sb65Se35−xGex thin films. Phys Scr. 2011;84:015604.
  • Chandel T, Zaman MB, Dwivedi SK, et al. Structural, morphological and optical properties of sprayed Cu2ZnSnS4 thin films by varying the molar concentration of Zn & Sn. Vacuum. 2019;159:341–445.
  • Saleh SA, Ibrahim AA, Mohamed SH. Structural and optical properties of nanostructured Fe-doped SnO2. Acta Phys Polinica A. 2016;126:1220–1225.
  • Imran MMA, Lafi OA, Abu-Samak M. Effect of thermal annealing on some electrical properties and optical band gap of vacuum evaporated Se65Ga30In5 thin films. Vacuum. 2012;86:1589–1594.
  • Ali HM, Saleh SA. Growth and opto-electro-structural properties of nanocrystalline PbSe thin films. Thin Solid Films. 2014;556:552–559.
  • Sinha AK. Band gap energy calculation of cobalt doped bismuth ferrite nanoparticles. Mater Today Proc. 2021;42:1519–1521.
  • Hsu KF, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science. 2004;303:818–821.
  • Ibrahim MM, Ibrahim EMM, Saleh SA, et al. Synthesis and characterization of semimagnetic semiconductor Pb1−xSmxSe. J Alloys Compd. 2007;429:19.
  • Figiel H, Budziak A, Żukrowski J, et al. Neutron diffraction studies of TbMn2Dx and ErMn2D2. J Mag Mag Mater. 2004;272–276:585–586.
  • Lv T, Li Z, Liu Y, et al. Improving thermoelectric performance of (Bi0.2Sb0.8)2(Te0.97Se0.03)3 via Sm-doping. J Alloys Compd. 2019;787:909–917.
  • LoŠŤák P, Horák J, Navrátil J, et al. Properties of Bi2Se3 single crystals doped with Pb atoms. Phys Stat Sol A. 1993;136:K121–K125.
  • Plecháček T, Navrátil J, Horák J, et al. Defect structure of Pb-doped Bi2Te3 single crystals. Phil Mag. 2004;84:2217–2228.
  • Soni A, Yanyuan Z, Ligen Y, et al. Enhanced thermoelectric properties of solution grown Bi2Te3–xSex nanoplatelet composites. Nano Lett. 2012;12:1203–1209.
  • Ivanovaa LD, Petrova LI, Granatkina YV, et al. Extruded thermoelectric materials based on Bi2Te3-Bi2Se3 solid solutions. Inorg Mater. 2009;45:123–128.
  • Son JH, Oh MW, Kim BS, et al. Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3. J Alloy Compd. 2013;566:168–174.
  • Zhang C, Fan XA, Hu J, et al. Changing the band gaps by controlling the distribution of initial particle size to improve the power factor of N-type Bi2Te3 based polycrystalline bulks. Adv Eng Mater. 2017;19:1600696.
  • Bruncko J, Šutta P, Netrvalová M, et al. Pulsed laser deposition of Ga doped ZnO films – influence of deposition temperature and laser pulse frequency on structural, optical and electrical properties. Vacuum. 2019;159:134–140.