878
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of Nd3+ and Ni2+ dopants on the structural, electrical and dielectric behaviour of PbZrO3 nanocrystalline material

, , ORCID Icon, , , , , , & show all
Pages 362-371 | Received 13 Aug 2021, Accepted 28 Mar 2022, Published online: 07 Apr 2022

References

  • Li YZ, Wang ZJ, Bai Y, et al. High energy storage performance in Ca-doped PbZrO3 antiferroelectric films. J Eur Ceram Soc. 2020;40:1285–1292.
  • Feng Y, Wei X, Wang D, et al. Dielectric behaviors of antiferroelectric–ferroelectric transition under electric field. Ceram Int. 2004;30:1389–1392.
  • Chu B, Zhou Y, Zhang S. 10 – Charging and discharging characteristics of dielectric polymer materials. In: Dang Z-M, editor. Dielectric polymer materials for high-density energy storage. William Andrew, Beijing, China; 2018. p. 351–382.
  • Anna Zielińska-Jurek JR, Grabowska E, Zaleska A. Nanoparticles preparation using microemulsion systems, microemulsions – an introduction to properties and applications. InTech; 2012.
  • Ganguli AK, Ahmad T, Vaidya S, et al. Microemulsion route to the synthesis of nanoparticles. Pure Appl Chem. 2008;80(11):2451–2477.
  • Thatikonda SK, Huang W, Du X, et al. Sm-doping induced large enhancement of antiferroelectric and energy storage performances of (111) oriented PbZrO3 thin films. Ceram Int. 2019;45:23586–23591.
  • Shahzad MA, Shahid M, Bibi I, et al. The effect of rare earth Dy3+ ions on structural, dielectric and electrical behavior of new nanocrystalline PbZrO3 perovskites. Ceram Int. 2017;43:1073–1079.
  • Bharadwaja SSN, Krupanidhi SB. Study of La-modified antiferroelectric PbZrO3 thin films. Thin Solid Films. 2003;423:88–96.
  • Yao Y, Gallego M, Bassiri-Gharb N. Effects of Nb and Mg doping on the dielectric and electromechanical properties of PbZrO3 thin films. J Eur Ceram Soc. 2021;41:3363–3368.
  • Charoonsuk P, Vittayakorn W, Muanghlua R, et al. Aqueous Co-precipitated spherical shape PbZrO3 nanopowders: perovskite phase formation. Ceram Int. 2013;39(Supplement 1):S107–S111.
  • Chotsawat M, Sarasamak K, Thanomngam P, et al. First-principles study of Bi and Al in orthorhombic PbZrO3. Comput Mater Sci. 2016;115:99–103.
  • Hemeda OM, Salem BI, Abdelfatah H, et al. Dielectric and ferroelectric properties of barium zirconate titanate ceramics prepared by ceramic method. Phys B. 2019;574:411680.
  • Khirade PP, Raut AV, Alange RC, et al. Structural, electrical and dielectric investigations of cerium doped barium zirconate (BaZrO3) nano-ceramics produced via green synthesis: probable candidate for solid oxide fuel cells and microwave applications. Phys B. 2021;613:412948.
  • Shahzad MA, Warsi MF, Khan MA, et al. New Nd-doped lead zirconate Pb1-1.5xNdxZrO3 nanocrystals: fabrication via wet chemical route for electrical and dielectric parameters evaluation. J Alloys Compd, 2015;647:693–698.
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32:751–767.
  • Baig MM, Yousuf MA, Agboola PO, et al. Optimization of different wet chemical routes and phase evolution studies of MnFe2O4 nanoparticles. Ceram Int. 2019;45:12682–12690.
  • Yousuf MA, Baig MM, Waseem M, et al. Low cost micro-emulsion route synthesis of Cr-substituted MnFe2O4 nanoparticles. Ceram Int. 2019;45:22316–22323.
  • Malik MA, Wani MY, Hashim MA. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab J Chem 2012;5:397–417.
  • Junaid M, Khan MA, Hashmi ZM, et al. Structural, spectral, magnetic and dielectric properties of Bi substituted Li-Co spinel ferrites. J Mol Struct. 2020;1221:128859.
  • Vaidya S, Ganguli AK. 2.01 – Microemulsion methods for synthesis of nanostructured materials. In: Andrews DL, Lipson RH, Nann T, editors. Comprehensive nanoscience and nanotechnology. 2nd ed. Oxford: Academic Press; 2019. p. 1–12.
  • Khosa T, Faiz A, Hayder A, et al. Synthesis and characterization of newly synthesized neodymium zirconate zinc sulfide nanocomposite and its effect on selected aspects of albino mice behavior. Naunyn-Schmiedeb Arch Pharmacol. 2020;393:717–725.
  • Sukkha U, Vittayakorn W, Muanghlua R, et al. Effect of A-site and B-site ion replaced with small ions on the intermediate phase in PbZrO3 ceramic. Mater Chem Phys. 2014;143:1517–1521.
  • Vittayakorn N, Bongkarn T, Rujijanagul G. Phase transition, mechanical, dielectric and piezoelectric properties of perovskite (Pb1−xBax)ZrO3 ceramics. Phys B. 2007;387:415–420.
  • Charoonsuk P, Vittayakorn N. Perovskite phase formation of monosized lead zirconate (PbZrO3) nanoparticles prepared by the sono-assisted Co-precipitation method. J Nanosci Nanotechnol. 2013;13:3529–3534.
  • Deshpande AS, Khollam YB, Patil AJ, et al. Improved chemical route for quantitative precipitation of lead zirconyl oxalate (PZO) leading to lead zirconate (PZ) powders. Mater Lett. 2001;51:161–171.
  • Moure C, Peña O. Recent advances in perovskites: processing and properties. Prog Solid State Chem. 2015;43:123–148.
  • Sigwadi R, Mokrani T, Dhlamini M. The synthesis, characterization and electrochemical study of zirconia oxide nanoparticles for fuel cell application. Phys B. 2020;581:411842.
  • Ahmad T, Ubaidullah M, Lone IH, et al. Microemulsion synthesis, structural characterization and dielectric properties of Ba1-xPbxZrO3 (0.05 ≤ x ≤ 0.20) nanoparticles. Mater Res Bull. 2017;89:185–192.
  • Gilani ZA, Warsi MF, Anjum MN, et al. Structural and electromagnetic behavior evaluation of Nd-doped lithium–cobalt nanocrystals for recording media applications. J Alloys Compd. 2015;639:268–273.
  • Malik H, Mahmood A, Mahmood K, et al. Influence of cobalt substitution on the magnetic properties of zinc nanocrystals synthesized via micro-emulsion route. Ceram Int. 2014;40:9439–9444.
  • Javed H, Iqbal F, Agboola PO, et al. Structural, electrical and magnetic parameters evaluation of nanocrystalline rare earth Nd3+-substituted nickel-zinc spinel ferrite particles. Ceram Int. 2019;45:11125–11130.
  • Lodhi MY, Mahmood K, Mahmood A, et al. New Mg0.5CoxZn0.5−xFe2O4 nano-ferrites: structural elucidation and electromagnetic behavior evaluation. Curr Appl Phys. 2014;14:716–720.
  • Rafiq MA, Khan MA, Asghar M, et al. Influence of Co2+ on structural and electromagnetic properties of Mg–Zn nanocrystals synthesized via co-precipitation route. Ceram Int. 2015;41:10501–10505.
  • Kousar T, Ahmad I, Khan MA, et al. Structural, electrical, dielectric and magnetic behavior of Gd1−xBixFe1−yZryO3 nanoparticles for advanced technological applications. Ceram Int. 2015;41:8578–8583.
  • Gilani ZA, Warsi MF, Khan MA, et al. Impacts of neodymium on structural, spectral and dielectric properties of LiNi0.5Fe2O4 nanocrystalline ferrites fabricated via micro-emulsion technique. Physica E. 2015;73:169–174.
  • Liu H. Universal dielectric relaxation induced giant dielectric permittivity in Mn-doped PbZrO3 ceramics. Ceram Int. 2019;45:10380–10384.
  • Shahzad MA, Warsi MF, Khan MA, et al. New Nd-doped lead zirconate Pb1−1.5xNdxZrO3 nanocrystals: fabrication via wet chemical route for electrical and dielectric parameters evaluation. J Alloys Compd. 2015;647:693–698.
  • Nunes JMA, Espinosa JWM, Gurgel MFC, et al. Photoluminescent properties of lead zirconate powders obtained by the polymeric precursor method. Ceram Int. 2012;38:4593–4599.
  • Wang Y, Santiago-Avilés JJ. Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo-organic decomposition process. Nanotechnology. 2004;15:32.
  • Fernández-Osorio AL, Vázquez-Olmos A, Mata-Zamora E, et al. Preparation of free-standing Pb(Zr0.52Ti0.48)O3 nanoparticles by sol–gel method. J Sol-Gel Sci Technol. 2007;42:145–149.
  • Dipti, Juneja JK, Singh S, et al. Study on structural, dielectric, ferroelectric and piezoelectric properties of Ba doped lead zirconate titanate ceramics. Phys B. 2013;431:109–114.
  • Azhar Khan M, Sabir M, Mahmood A, et al. High frequency dielectric response and magnetic studies of Zn1−xTbxFe2O4 nanocrystalline ferrites synthesized via micro-emulsion technique. J Magn Magn Mater. 2014;360:188–192.
  • Basu T, Sen S, Seal A, et al. Temperature dependent electrical properties of PZT wafer. J Electron Mater. 2016;45:2252 –2257.
  • Panigrahi SC, Das PR, Parida BN, et al. Dielectric and electrical properties of gadolinium-modified lead-zirconate-titanate system. J Alloys Compd. 2014;604:73–82.
  • Yousuf MA, Hussain S, Kousar T, et al. The impact of pH on structural and electrical properties of Er-substituted ZnFe2O4 nanoparticles synthesized via wet chemical route. J Supercond Novel Magn. 2021;42:1823–1831.
  • Shah AA, Ahmad S, Azam A. Investigation of structural, optical, dielectric and magnetic properties of LaNiO3 and LaNi1−xMxO3 (M = Fe, Cr & Co; x = 5%) nanoparticles. J Magn Magn Mater. 2020;494:165812.
  • Ali R, Khan MA, Mahmood A, et al. Structural, magnetic and dielectric behavior of Mg1−xCaxNiyFe2−yO4 nano-ferrites synthesized by the micro-emulsion method. Ceram Int. 2014;40:3841–3846.
  • Anwar Z. Investigation of dielectric behavior of new Tb3+ doped BiFeO3 nanocrystals synthesized via micro-emulsion route. J Ovonic Res. 2014;10:265–273.
  • Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267:673–679.
  • Parashar SKS, Choudhary RNP, Murty BS. Electrical properties of Gd-doped PZT nanoceramic synthesized by high-energy ball milling. Mater Sci Eng B. 2004;110:58–63.
  • Yousuf MA, Jabeen S, Shahi MN, et al. Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Results Phys. 2020;16:102973.
  • Balke N, Granzow T, Rödel J. Current-voltage characteristics for lead zirconate titanate bulk ceramics. J Appl Phys. 2008;104:054120.
  • Kumar H, Singh JP, Srivastava R, et al. FTIR and electrical study of dysprosium doped cobalt ferrite nanoparticles. J Nanosci. 2014;4:10.
  • Hassan A, Azhar Khan M, Shahid M, et al. Nanocrystalline Zn1−xCo0.5xNi0.5xFe2O4 ferrites: fabrication via co-precipitation route with enhanced magnetic and electrical properties. J Magn Magn Mater. 2015;393:56–61.